A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Assessing impacts of global climate change on water and food security in the black soil region of Northeast China using an improved SWAT-CO model. | LitMetric

Assessing impacts of global climate change on water and food security in the black soil region of Northeast China using an improved SWAT-CO model.

Sci Total Environ

College of Land Science and Technology, China Agricultural University, Beijing 100193, China; Key Laboratory of Arable Land Conservation in North China, Ministry of Agriculture and Rural Affairs, Beijing 100193, China. Electronic address:

Published: January 2023

Future climate change may have substantial impacts on both water resources and food security in China's black soil region. The Liao River Basin (LRB; 220,000 km) is representative of the main black soil area, making it ideal for studying climate change effects on black soil. In this study, the Soil and Water Assessment Tool (SWAT) model was first initialized for the LRB. Actual evapotranspiration (ET) values calculated using the Surface Energy Balance System (SEBS) model and city-level corn (Zea mays L.) yields were then used to calibrate the SWAT model. Finally, the SWAT model was modified to accept dynamic CO input and output crop transpiration, soil evaporation, and canopy interception separately to explore the impacts of future climate change on ET related variables and crop water productivity (CWP) in the LRB. Simulation scenario design included 22 General Circulation Models (GCMs) and 4 Shared Socioeconomic Pathways (SSPs) scenarios from the latest Coupled Model Intercomparison Project 6 (CMIP6) for two 30-year periods of 2041-2070 and 2071-2100. The predicted results showed a significant (P < 0.05) increase in air temperatures and precipitation in the LRB. In contrast, solar radiation decreased significantly and was most reduced for the SSP3-7.0 scenario. Reference evapotranspiration (ET), ET, and soil evaporation significantly increased in future scenarios, while canopy interception and crop transpiration showed significant reductions, particularly under the 2071-2100 SSP5-8.5 scenario. Overall, corn yield elevated considerably (P < 0.05) with the largest increase for the SSP5-8.5 scenario during 2071-2100. However, the SSP3-7.0 scenario indicated a significant decline in yield. Future changes in CWP were similar to those for corn yield, with significant increases in the SSP1-2.6, SSP2-4.5, and SSP5-8.5 scenarios. These findings suggested future climate change may have a positive impact on corn production in the black soil region of the LRB.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2022.159482DOI Listing

Publication Analysis

Top Keywords

climate change
20
black soil
20
soil region
12
future climate
12
swat model
12
food security
8
soil
8
crop transpiration
8
soil evaporation
8
canopy interception
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!