Anti-inflammatory effects of theaflavin-3'-gallate during influenza virus infection through regulating the TLR4/MAPK/p38 pathway.

Eur J Pharmacol

College of Integrated Chinese and Western Medicine, Changchun University of Chinese Medicine, Changchun, Jilin, 130117, China; Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130122, China. Electronic address:

Published: January 2023

AI Article Synopsis

Article Abstract

Severe pathological damage caused by the influenza virus is one of the leading causes of death. However, the prevention and control strategies for influenza virus infection have certain limitations, and the exploration for new influenza antiviral drugs has become the major research direction. This study evaluated the antiviral activities of four theaflavin derivatives (TFs). Cytopathic effect (CPE) reduction assay revealed that theaflavin-3'-gallate (TF2b) and theaflavin (TF1) could effectively inhibit the replication of influenza viruses H1N1-UI182, H1N1-PR8, H3N2, and H5N1, and TF2b exhibited the most significant antiviral activity in vivo. Intraperitoneal injection of TF2b at 40 mg/kg/d effectively alleviated viral pneumonia, maintained body weight, and improved the survival rate of mice infected with a lethal dose of H1N1-UI182 to 55.56%. Hematological analysis of peripheral blood further showed that TF2b increased the number of lymphocytes and decreased the number of neutrophils, monocytes, and platelets in the blood of infected mice. RT-qPCR results showed that TF2b reduced the mRNA expression levels of inflammatory cytokines (IL-6, TNF-α, and IL-1β), chemokines (CXCL-2 and CCL-3), and interferons (IFN-α and IFN-γ) after influenza virus infection. In addition, TF2b significantly down-regulated the expression levels of TLR4, p-p38, p-ERK, and cytokines IL-6, TNF-α, IL-1β, and IL-10. These results suggest that TF2b not only significantly inhibits viral replication and proliferation in vitro, but also alleviates pneumonia injury in vivo. Its antiviral effect might be attributed to the down-regulation of influenza virus-induced inflammatory cytokines by regulating the TLR4/MAPK/p38 signaling pathway.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ejphar.2022.175332DOI Listing

Publication Analysis

Top Keywords

influenza virus
16
virus infection
12
regulating tlr4/mapk/p38
8
expression levels
8
inflammatory cytokines
8
cytokines il-6
8
il-6 tnf-α
8
tnf-α il-1β
8
influenza
7
tf2b
7

Similar Publications

Background: Whether a detected virus or bacteria is a pathogen that may require treatment, or is merely a commensal 'passenger', remains confusing for many infections. This confusion is likely to increase with the wider use of multi-pathogen PCR.

Objectives: To propose a new statistical procedure to analyse and present data from case-control studies clarifying the probability of causality.

View Article and Find Full Text PDF

Recombinant probiotic Escherichia coli delivers the polymeric protein of swine influenza virus for protection.

Vet Microbiol

January 2025

College of Veterinary Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun 130118, China. Electronic address:

Swine influenza virus invades the host through the respiratory mucosa, which severely restricts the development of the pig breeding industry. To construct monomeric and trimeric vaccines, we developed recombinant Escherichia coli Nissle 1917 (EcN) strains that express the receptor binding site (RBS) of the hemagglutinin (HA) antigen from H1N1 swine influenza virus. After the mucosal immunization of mice, we found that probiotics activated CD40 and CD86 in DCs and increased the levels of IL-4 and IFN-γ secretion by T cells.

View Article and Find Full Text PDF

Hemagglutinin with a polybasic cleavage site confers high virulence on H7N9 avian influenza viruses.

Poult Sci

January 2025

Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, PR China; Jiangsu Key Laboratory of Zoonoses, Yangzhou University, Yangzhou, PR China. Electronic address:

H7N9 avian influenza virus (AIV) first emerged in February 2013 in China, and early isolates were all low pathogenic (LP). After circulation for a few years in live poultry markets of China, LP H7N9 AIVs evolved into a highly pathogenic (HP) form in late 2016. Deduced amino acid sequence analysis of hemagglutinin (HA) gene revealed that all HP H7N9 AIVs have obtained four-amino-acid insertion at position 339-342 (H7 numbering), making the cleavage site from a monobasic motif (LP AIVs) to a polybasic form (HP AIVs).

View Article and Find Full Text PDF

The re-emergence of the mpox pandemic poses considerable challenges to human health and societal development. There is an urgent need for effective prevention and treatment strategies against the mpox virus (MPXV). In this study, we focused on the A35R protein and created a chimeric A35R-Fc protein by fusing the Fc region of IgG to its C-terminal.

View Article and Find Full Text PDF

Despite extensive experience with influenza surveillance in humans in Senegal, there is limited knowledge about the actual situation and genetic diversity of avian influenza viruses (AIVs) circulating in the country, hindering control measures and pandemic risk assessment. Therefore, as part of the "One Health" approach to influenza surveillance, we conducted active AIV surveillance in two live bird markets (LBMs) in Dakar to better understand the dynamics and diversity of influenza viruses in Senegal, obtain genetic profiles of circulating AIVs, and assess the risk of emergence of novel strains and their transmission to humans. Cloacal swabs from poultry and environmental samples collected weekly from the two LBMs were screened by RT-qPCR for H5, H7, and H9 AIVs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!