A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Electroconductive scaffolds based on gelatin and PEDOT:PSS for cardiac regeneration. | LitMetric

Electroconductive biomaterials have been emerged to support the recovery of the degenerated electrically conductive tissues, especially the cardiac ones after myocardial infarction. This work describes the development of electroconductive scaffolds for cardiac tissue regeneration by using a biocompatible and conductive polymer - i.e. poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT:PSS) - combined with a biomimetic polymer network of gelatin. Our approach involves the use of dehydrothermal (DHT) treatment in vacuum conditions to fabricate suitably stable scaffolds without using any additional crosslinking agent. The resulting scaffolds mimic the Young modulus - an essential mechanical performance - of native cardiac tissue and are endowed with a well-interconnected porosity coupled with a good swelling ability and stability in physiological conditions. Additionally, the presence of PEDOT:PSS is able to enhance the electroconductivity of resulting materials. All the scaffolds are non-cytotoxic towards H9C2 cardiomyoblasts and the presence of PEDOT:PSS enhances cell adhesion - especially at early timeframes, an essential condition for a successful outcome after the implantation - proliferation, and spreading on scaffolds. Considering the permissive interaction of scaffolds with cardiomyoblasts, the present biomimetic and electroconductive scaffolds display potential applications as implantable biomaterials for regeneration of electroconductive tissues, especially cardiac tissue, and as a promising 3D tissue model for in vitro biomolecules screening.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijbiomac.2022.10.122DOI Listing

Publication Analysis

Top Keywords

electroconductive scaffolds
12
cardiac tissue
12
regeneration electroconductive
8
tissues cardiac
8
presence pedotpss
8
scaffolds
7
electroconductive
5
cardiac
5
scaffolds based
4
based gelatin
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!