Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The cardiac-related component in chest electrical impedance tomography (EIT) measurement is of potential value to pulmonary perfusion monitoring and cardiac function measurement. In a spontaneous breathing case, cardiac-related signals experience serious interference from ventilation-related signals. Traditional cardiac-related signal-separation methods are usually based on certain features of signals. To further improve the separation accuracy, more comprehensive features of the signals should be exploited.We propose an unsupervised deep-learning method called deep feature-domain matching (DFDM), which exploits the feature-domain similarity of the desired signals and the breath-holding signals. This method is characterized by two sub-steps. In the first step, a novel Siamese network is designed and trained to learn common features of breath-holding signals; in the second step, the Siamese network is used as a feature-matching constraint between the separated signals and the breath-holding signals.The method is first tested using synthetic data, and the results show satisfactory separation accuracy. The method is then tested using the data of three patients with pulmonary embolism, and the consistency between the separated images and the radionuclide perfusion scanning images is checked qualitatively.The method uses a lightweight convolutional neural network for fast network training and inference. It is a potential method for dynamic cardiac-related signal separation in clinical settings.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1088/1361-6579/ac9c44 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!