The flexible strain sensor is an indispensable part in flexible integrated electronic systems and an important intermediate in external mechanical signal acquisition. The 3D printing technology provides a fast and cheap way to manufacture flexible strain sensors. In this paper, a MWCNTs/flexible resin composite for photocuring 3D printing was prepared using mechanical mixing method. The composite has a low percolation threshold (1.2%t). Based on the composite material, a flexible strain sensor with high performance was fabricated using digital light processing technology. The sensor has a GF of 8.98 under strain conditions ranging between 0% and 40% and a high elongation at break (48%). The sensor presents mechanical hysteresis under cyclic loading. With the increase of the strain amplitude, the mechanical hysteresis becomes more obvious. At the same time, the resistance response signal of the sensor shows double peaks during the unloading process, which is caused by the competition of disconnection and reconstruction of conductive network in the composite material. The test results show that the sensor has different response signals to different types of loads. Finally, its practicability is verified by applying it to balloon pressure detection.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1088/1361-6528/ac9c0b | DOI Listing |
Data Brief
February 2025
Biomedical Optics, Rawalpindi Medical University, Rawalpindi 46000, Pakistan.
is a well-known opportunistic pathogen, responsible for various nosocomial infections. UOL-KIMZ-24 was previously isolated from a clinical specimen, collected from Lahore General Hospital, Lahore (LGH), Pakistan, dated 3rd March, 2022. During the initial screening for antimicrobial susceptibility, the UOL-KIMZ-24 was found a multiple drug resistant (MDR) strain.
View Article and Find Full Text PDFAdv Mater
January 2025
The Institute of Flexible Electronics (IFE Future Technologies), Xiamen University, 422 Siming South Road, Xiamen, 361005, China.
Complex internal stresses that appear in flexible thin-film electronic devices under long-term deformation operation are associated with incompatible mechanical properties of the multiple layers, which potentially cause intralayer fracture and separation. These defects may result in device instability, performance loss, and failure. Herein, a thermoplastic functional strategy is proposed for manufacturing high-performance stretchable semiconducting polymers with excellent strain-tolerance capacities for flexible electronic devices.
View Article and Find Full Text PDFACS Nano
January 2025
CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, University of Science and Technology of China, Hefei, Anhui 230027, PR China.
Flexible on-skin electronics present tremendous popularity in intelligent electronic skins (e-skins), healthcare monitoring, and human-machine interfaces. However, the reported e-skins can hardly provide high permeability, good stretchability, and large sensitivity and are limited in long-term stability and efficient recyclability when worn on the human body. Herein, inspired from the human skin, a permeable, stretchable, and recyclable cellulose aerogel-based electronic system is developed by sandwiching a screen-printed silver sensing layer between a biocompatible CNF/HPC/PVA (cellulose nanofiber/hydroxypropyl cellulose/poly(vinyl alcohol)) aerogel hypodermis layer and a permeable polyurethane layer as the epidermis layer.
View Article and Find Full Text PDFJ Mol Biol
January 2025
Department of Biochemistry and Cell Biology, Max Perutz Labs, University of Vienna, Dr. Bohr Gasse 9 A-1030 Vienna, Austria.
N-degrons are amino-terminal degradation signals. Non-acetylated first residues with bulky side chains were the first discovered N-degrons. In yeast, their ability to destabilize a protein depends on ubiquitin ligase Ubr1, which has a binding site for basic first residues, the UBR box, and one for hydrophobic first residues, the N domain.
View Article and Find Full Text PDFCommun Biol
January 2025
Faculty of Science, Ibaraki University, Mito, Japan.
Halorhodospira (Hlr.) halophila strain BN9622 is an extremely halophilic and alkaliphilic purple phototrophic bacterium and has been widely used as a model for exploring the osmoadaptive and photosynthetic strategies employed by phototrophic extreme halophiles that enable them to thrive in hypersaline environments. Here we present the cryo-EM structures of (1) a unique native Hlr.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!