Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Purpose: In 2020, ASCO recommended that all women with epithelial ovarian cancer have germline testing for mutations, and those without a germline pathogenic variant (PV) should have somatic tumor testing to determine eligibility for a poly (ADP-ribose) polymerase inhibitor. Consequently, the majority of patients with ovarian cancer will have both germline testing and somatic testing. An alternate strategy is tumor testing first and then germline testing if there is a PV in the tumor and/or significant family history. The objective was to conduct a cost-effectiveness analysis comparing the two testing strategies.
Methods: The Markov model compared the costs (US dollars) and benefits of two testing strategies for newly diagnosed ovarian cancer: (1) ASCO strategy and (2) tumor testing triage for germline testing. Data were applied from SOLO-1, and costs were from wholesale acquisition prices, Medicare, and published sources. Sensitivity analyses accounted for uncertainty around various parameters. Monte Carlo simulation estimated the number tested and identified with germline and somatic PV for olaparib maintenance treatment annually in the US population.
Results: The ASCO strategy was more effective but more costly than tumor testing triage in identifying patients for olaparib, with an incremental cost-effectiveness ratio of $281,296 US dollars per progression-free life year gained. Assuming 10,000 eligible patients with ovarian cancer annually, Monte Carlo simulation yielded comparable numbers of patients with PV in the germline and tumor with the ASCO and tumor testing triage strategies (2,080 2,062, respectively), but substantially higher number of patients tested using the ASCO strategy (8,052 3,076).
Conclusion: The ASCO strategy may identify more PVs but is not cost-effective. Tumor testing in epithelial ovarian cancer as triage for germline testing is the favored strategy in this health care system.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9616645 | PMC |
http://dx.doi.org/10.1200/PO.22.00033 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!