Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Introduction: Breast cancer affects 1 in 8 women in the US and is the most frequently diagnosed cancer in women. In South Dakota, 102 women die from breast cancer each year. We assessed which sociodemographic factors contributed to mortality rates in South Dakota and used spatial analysis to investigate how counties' observed age-adjusted mortality rates compared with expected rates.
Methods: We computed standardized incidence ratios (SIRs) of all counties in South Dakota by using the age-adjusted mortality rates, the 2000 US standard population, and the South Dakota estimated population. We used a linear regression model to identify sociodemographic factors associated with breast cancer mortality rates and to compute a new SIR value, after controlling for relevant factors.
Results: Educational level and breast cancer incidence rates were significantly associated with breast cancer mortality rates at the county level. The SIR values based on age-adjusted counts showed which counties had more deaths due to breast cancer than what might be expected using South Dakota as the reference population. After controlling for sociodemographic factors, the range of SIR values decreased and had lower variability.
Conclusion: The regression model helped identify factors associated with mortality and provided insights into which risk factors are at play in South Dakota. This information, in combination with the spatial distribution of mortality by county, can be used to help allocate resources to the counties in South Dakota that need them most.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9616131 | PMC |
http://dx.doi.org/10.5888/pcd19.220113 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!