The laboratory mouse is a key player in preclinical oncology research. However, emphasis of techniques reporting at the expense of critical animal-related detail compromises research integrity, animal welfare, and, ultimately, the translation potential of mouse-based oncology models. To evaluate current reporting practices, we performed a cross-sectional survey of 400 preclinical oncology studies using mouse solid-tumour models. Articles published in 2020 were selected from 20 journals that specifically endorsed the ARRIVE (Animal Research: Reporting of In Vivo Experiments) preclinical reporting guidelines. We assessed reporting compliance for 22 items in five domains: ethical oversight assurance, animal signalment, husbandry, welfare, and euthanasia. Data were analysed using hierarchical generalised random-intercept models, clustered on journal. Overall, reporting of animal-related items was poor. Median compliance over all categories was 23%. There was little or no association between extent of reporting compliance and journal or journal impact factor. Age, sex, and source were reported most frequently, but verifiable strain information was reported for <10% of studies. Animal husbandry, housing environment, and welfare items were reported by <5% of studies. Fewer than one in four studies reported analgesia use, humane endpoints, or an identifiable method of euthanasia. Of concern was the poor documentation of ethical oversight information. Fewer than one in four provided verifiable approval information, and almost one in ten reported no information, or information that was demonstrably false. Mice are the "invisible actors" in preclinical oncology research. In spite of widespread endorsement of reporting guidelines, adherence to reporting guidelines on the part of authors is poor and journals fail to enforce guideline reporting standards. In particular, the inadequate reporting of key animal-related items severely restricts the utility and translation potential of mouse models, and results in research waste. Both investigators and journals have the ethical responsibility to ensure animals are not wasted in uninformative research.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9584398 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0274738 | PLOS |
Cancer Invest
January 2025
Department of Pathology & Laboratory Medicine, Aga Khan University, Karachi, Pakistan.
Accurate and timely diagnosis of t(9;22)-positive leukemias is vital to improving survival in pediatric patients. In low-resource settings, where healthcare disparities are exacerbated by limited resources, cost-effective and efficient diagnostic methods are essential for bridging these gaps and ensuring better outcomes. Among the diagnostic tools evaluated among 23 patients sample, RT-PCR demonstrated superior sensitivity (100%) and the shortest turnaround time (7 days), significantly outperforming FISH and karyotyping in both accuracy and timeliness.
View Article and Find Full Text PDFMater Horiz
January 2025
School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China.
The quantum anomalous Hall effect (QAHE) with a high Chern number hosts multiple dissipationless chiral edge channels, which is of fundamental interest and promising for applications in spintronics. However, QAHE is currently limited in two-dimensional (2D) ferromagnets with Chern number . Using a tight-binding model, we put forward that Floquet engineering offers a strategy to achieve QAHE in 2D nonmagnets, and, in contrast to generally reported QAHE in 2D ferromagnets, a high-Chern-number is obtained accompanied by the emergence of two chiral edge states.
View Article and Find Full Text PDFNano Lett
January 2025
Key Lab for the Physics and Chemistry of Nanodevices and Center for Carbon-based Electronics, School of Electronics, Peking University, Beijing 100871, China.
One-time programmable (OTP) memory is an essential component in chips, which has extremely high security to protect the stored critical information from being altered. However, traditional OTP memory based on the thermal breakdown of the dielectric has a large programming current, which leads to high power consumption. Here, we report a gate tunneling-induced "cold" breakdown phenomenon in carbon nanotube (CNT) field-effect transistors, and based on this we construct a "cold" fuse (C-fuse) memory where applying a mild gate voltage can break down the CNT channel without damaging the gate dielectric.
View Article and Find Full Text PDFJMIR Public Health Surveill
January 2025
Unit of Biostatistics, Epidemiology and Public Health, Department of Cardio-Thoraco-Vascular Sciences and Public Health, University of Padova, Via Loredan 18, Padova, Italy, 39 049 8275384.
Background: As the COVID-19 pandemic has affected populations around the world, there has been substantial interest in wastewater-based epidemiology (WBE) as a tool to monitor the spread of SARS-CoV-2. This study investigates the use of WBE to anticipate COVID-19 trends by analyzing the correlation between viral RNA concentrations in wastewater and reported COVID-19 cases in the Veneto region of Italy.
Objective: We aimed to evaluate the effectiveness of the cumulative sum (CUSUM) control chart method in detecting changes in SARS-CoV-2 concentrations in wastewater and its potential as an early warning system for COVID-19 outbreaks.
J Physiol Investig
January 2025
Department of Physiology, China Medical University, Taichung, Taiwan.
In a previous report, we showed that voltage-gated K+ (Kv) Kv1 and Kv2 channels are involved in cAMP-induced neuritogenesis of mouse neuronal N2A cells. In this report, we examined the effects of tannic acid (TA) on Kv channels and neuritogenesis in N2A cells. TA (15 μM) mildly enhanced Kv currents at -30 to -20 mV but strongly inhibited Kv currents at higher voltages, causing a preferential activation of currents at low voltages.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!