Light-Activated Gold-Selenium Core-Shell Nanocomposites with NIR-II Photoacoustic Imaging Performances for Heart-Targeted Repair.

ACS Nano

Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, China.

Published: November 2022

Mitochondrial dysfunction and oxidative damage represent important pathological mechanisms of myocardial ischemia-reperfusion injury (MI/RI). Searching for potential antioxidant agents to attenuate MI/RI is of great significance in clinic. Herein, gold-selenium core-shell nanostructures (AS-I/S NCs) with good near-infrared (NIR)-II photoacoustic imaging were designed for MI/RI treatment. The AS-I/S NCs after ischemic myocardium-targeted peptide (IMTP) and mitochondrial-targeted antioxidant peptide SS31 modification achieved cardiomyocytes-targeted cellular uptake and enhanced antioxidant ability and significantly inhibited oxygen-glucose deprivation-recovery (OGD/R)-induced cardiotoxicity of H9c2 cells by inhibiting the depletion of mitochondrial membrane potential (MMP) and restoring ATP synthase activity. Furthermore, the AS-I/S NCs after SS31 modification achieved mitochondria-targeted inhibition of reactive oxygen species (ROS) and subsequently attenuated oxidative damage in OGD/R-treated H9c2 cells by inhibition of apoptosis and oxidative damage, regulation of MAPKs and PI3K/AKT pathways. The AS-I/S NCs administration dramatically improved myocardial functions and angiogenesis and inhibited myocardial fibrosis through inhibiting myocardial apoptosis and oxidative damage in MI/RI of rats. Importantly, the AS-I/S NCs showed good safety and biocompatibility . Therefore, our findings validated the rational design that mitochondria-targeted selenium-gold nanocomposites could attenuate MI/RI of rats by inhibiting ROS-mediated oxidative damage and regulating MAPKs and PI3K/AKT pathways, which could be a potential therapy for the MI/RI treatment.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsnano.2c07311DOI Listing

Publication Analysis

Top Keywords

oxidative damage
20
as-i/s ncs
20
gold-selenium core-shell
8
nir-ii photoacoustic
8
photoacoustic imaging
8
attenuate mi/ri
8
ncs good
8
mi/ri treatment
8
ss31 modification
8
modification achieved
8

Similar Publications

Exposure to vanadium (V) occurs through the ingestion of contaminated water, polluted soil, V-containing foods and medications, and the toxicity and absorption during the small intestine phase after oral ingestion play crucial roles in the ultimate health hazards posed by V. In this study, the human colon adenocarcinoma (Caco-2) cells were selected as an intestinal absorption model to investigate the uptake and cytotoxicity of vanadyl sulfate (VOSO) and sodium orthovanadate (NaVO). Our results confirmed the cytotoxic effects of V(IV) and V(V) and revealed a greater toxicity of V(IV) than V(V) towards Caco-2 cells.

View Article and Find Full Text PDF

Puerarin pretreatment provides protection against myocardial ischemia/reperfusion injury via inhibiting excessive autophagy and apoptosis by modulation of HES1.

Sci Rep

January 2025

Department of Cardiovascular Surgery, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, 17 Yongwai Road, Nanchang, 330006, Jiangxi, China.

The study aimed to elucidate the underlying pharmacological mechanism of the traditional Chinese medicine Pue in ameliorating myocardial ischemia-reperfusion injury (MIRI), a critical clinical challenge exacerbated by reperfusion therapy. In vivo MIRI and in vitro anoxia/reoxygenation (A/R) models were constructed. The results demonstrated that Pue pretreatment effectively alleviated MIRI, as manifested by diminishing the levels of serum CK-MB and LDH, mitigating the extent of myocardial infarction and enhancing cardiac functionality.

View Article and Find Full Text PDF

Loss-of-function mutations in PARK7, encoding for DJ-1, can lead to early onset Parkinson's disease (PD). In mice, Park7 deletion leads to dopaminergic deficits during aging, and increased sensitivity to oxidative stress. However, the severity of the reported phenotypes varies.

View Article and Find Full Text PDF

Nuclear speckles are membraneless organelles that associate with active transcription sites and participate in post-transcriptional mRNA processing. During the cell cycle, nuclear speckles dissolve following phosphorylation of their protein components. Here, we identify the PP1 family as the phosphatases that counteract kinase-mediated dissolution.

View Article and Find Full Text PDF

Electroacupuncture attenuates ferroptosis by promoting Nrf2 nuclear translocation and activating Nrf2/SLC7A11/GPX4 pathway in ischemic stroke.

Chin Med

January 2025

Yunnan Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Key Laboratory of Acupuncture and Massage for Treatment of Encephalopathy, College of Acupuncture, Tuina and Rehabilitation, Yunnan University of Traditional Chinese Medicine, Kunming, China.

Objective: Electroacupuncture has been shown to play a neuroprotective role following ischemic stroke, but the underlying mechanism remains poorly understood. Ferroptosis has been shown to play a key role in the injury process. In the present study, we wanted to explore whether electroacupuncture could inhibit ferroptosis by promoting nuclear factor erythroid-2-related factor 2 (Nrf2) nuclear translocation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!