Little is known about the origin of the spectral diversity of asteroids and what it says about conditions in the protoplanetary disk. Here, we show that samples returned from Cb-type asteroid Ryugu have Fe isotopic anomalies indistinguishable from Ivuna-type (CI) chondrites, which are distinct from all other carbonaceous chondrites. Iron isotopes, therefore, demonstrate that Ryugu and CI chondrites formed in a reservoir that was different from the source regions of other carbonaceous asteroids. Growth and migration of the giant planets destabilized nearby planetesimals and ejected some inward to be implanted into the Main Belt. In this framework, most carbonaceous chondrites may have originated from regions around the birthplaces of Jupiter and Saturn, while the distinct isotopic composition of CI chondrites and Ryugu may reflect their formation further away in the disk, owing their presence in the inner Solar System to excitation by Uranus and Neptune.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11627214PMC
http://dx.doi.org/10.1126/sciadv.add8141DOI Listing

Publication Analysis

Top Keywords

solar system
8
carbonaceous chondrites
8
chondrites
5
ryugu's nucleosynthetic
4
nucleosynthetic heritage
4
heritage outskirts
4
outskirts solar
4
system origin
4
origin spectral
4
spectral diversity
4

Similar Publications

Biomimetic photosynthesis, which leverages nanomaterials with light-responsive capabilities, represents an innovative approach for replicating natural photosynthetic processes for green and sustainable energy conversion. In this study, a covalent-organic framework (COF)-based artificial photosynthesis system is realized through the co-assembly of adenosine triphosphate (ATP) synthase and a light-responsive proton generator onto an imine-based COF, RT-COF-1. This system demonstrates an ATP production rate of 0.

View Article and Find Full Text PDF

Performance Enhancement by Integrating the Ionic Thermoelectric Generator with a Photovoltaic Cell.

ACS Appl Mater Interfaces

December 2024

Department of Flexible Sensing Technology, Institute of Chemical Engineering, Guangdong Academy of Sciences, Guangzhou 510665, China.

The global solar market is booming with a rapid growth in installed integrated devices, while photovoltaic (PV) systems are suffering from waste heat, which causes the decline of the photovoltaic conversion efficiency (PCE). This study presents the seamless integration of the ionic thermoelectric generator (iTEG) layer with traditional PV modules, facilitating the exploitation of waste heat and augmenting the overall power output. Experimental results validate the effectiveness of the iTEG, demonstrating substantial power generation and a consistent energy output.

View Article and Find Full Text PDF

Effective integrated thermal management using hygroscopic hydrogel for photovoltaic-thermoelectric applications.

J Colloid Interface Sci

December 2024

Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, Hubei University, Wuhan 430062, China; State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China. Electronic address:

As the proportion of solar energy in the global energy mix increases, photovoltaic cells have emerged as one of the fastest-growing technologies in the renewable energy sector. However, photovoltaics utilize only a limited portion of the incident solar spectrum, resulting in significant amounts of light energy being wasted as heat. This excess heat raises the surface temperature of photovoltaic cells, which in turn reduces their overall efficiency.

View Article and Find Full Text PDF

Synergistic Optimization of Buried Interface via Hydrochloric Acid for Efficient and Stable Perovskite Solar Cells.

Small

December 2024

State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources, School of New Energy, North China Electric Power University, Beijing, 102206, China.

Incorporating chlorine into the SnO electron transport layer (ETL) has proven effective in enhancing the interfacial contact between SnO and perovskite in perovskite solar cells (PSCs). However, previous studies have primarily focused on the role of chlorine in passivating surface trap defects in SnO, without considering its influence on the buried interface. Here, hydrochloric acid (HCl) is introduced as a chlorine source into commercial SnO to form Cl-capped SnO (Cl-SnO) ETL, aiming to optimize the buried interface of the PSC.

View Article and Find Full Text PDF

Synthetic photobiocatalysts are promising catalysts for valuable chemical transformations by harnessing solar energy inspired by natural photosynthesis. However, the synergistic integration of all of the components for efficient light harvesting, cascade electron transfer, and efficient biocatalytic reactions presents a formidable challenge. In particular, replicating intricate multiscale hierarchical assembly and functional segregation involved in natural photosystems, such as photosystems I and II, remains particularly demanding within artificial structures.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!