The sperm-associated antigen 5 (SPAG5) is an important protein in mitosis and cell cycle checkpoint regulation, with more attention as a novel oncogene in various cancers. High level of SPAG5 expression has been detected in our clinical gastric cancer (GC) samples and The Cancer Genome Atlas GC data. However, the bio-function and potential mechanism of SPAG5 in GC remain unclear. In this study, we investigated the role of SPAG5 in GC development and the correlation between SPAG5 and 5-fluorouracil (5-FU) treatment. SPAG5 expression was increased in GC samples compared with that in normal tissues (80.8% vs. 22.0%), which was apparently associated with a worse outcome. Biological experiments showed that knockdown of SPAG5 induced apoptosis and suppressed proliferation in cells and animal models. Downregulation of SPAG5 enhanced the sensitivity of 5-FU in GC cells. Gene microarray chip identified 856 upregulated and 787 downregulated genes in SPAG5 silencing cells. Furthermore, 12 significant genes, including CDKN1A, CDKN1B, EIF4E, MAPK1, and HSP90B1, belonged to the PI3K/AKT signaling pathway using ingenuity pathway analysis. Meanwhile, real-time PCR and Western blotting results showed that knockdown of SPAG5 inhibited PI3K/AKT signaling pathway. Collectively, SPAG5 promotes the growth of GC cells by regulating PI3K/AKT signaling pathway, which could be the promising target gene in GC therapy.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1089/dna.2021.0531 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!