Determining the most appropriate probability distribution function for meteorological drought indices in Urmia Lake Basin, Iran.

Environ Monit Assess

Department of Desert Control, Faculty of Natural Resources and Earth Sciences, University of Kashan, Kashan, Iran.

Published: October 2022

Normalization is believed to be one of the most important parts of numerical computation in discrete mathematics. This process aims to transform a wide numerical range into a narrower one. Hence, in a number of fields of study, numerous distribution functions (DF) have been extended based on their applications, one of which is drought calculation. In this research, annual drought was calculated via standard precipitation index (SPI) and China Z Index (CZI) through seven three-parametric DFs (Pearson 5, Weibull, Pearson 3 (gamma), log Pearson, Fréchet, log-logistic, and fatigue life) in order to determine the most appropriate one for each index in Urmia Lake Basin. To this end, the results of both SPI and CZI, with DFs and without them, were compared with statistical analyzers (RMSE, ME, R2, and pearson correlation). The results indicated that Weibull-CZI and Pearson 5-SPI had the highest correlation with the normal ones. Therefore, they could be used as the best DFs for these drought indices in this basin. Moreover, among the studied years, Gelazchay and Daryanchay stations experienced the most severe drought in 2008 and 1999 based on the CZI and SPI, respectively. It should be noted that in another section of the current study, the correlation between the two indices was analyzed and the results showed high correlations between them.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10661-022-10639-yDOI Listing

Publication Analysis

Top Keywords

drought indices
8
urmia lake
8
lake basin
8
drought
5
pearson
5
determining appropriate
4
appropriate probability
4
probability distribution
4
distribution function
4
function meteorological
4

Similar Publications

Soil salinity poses a significant environmental challenge for the growth and development of blueberries. However, the specific mechanisms by which blueberries respond to salt stress are still not fully understood. Here, we employed a comprehensive approach integrating physiological, metabolomic, and transcriptomic analyses to identify key metabolic pathways in blueberries under salt stress.

View Article and Find Full Text PDF

Introduction: Belowground bud banks (or bud-bearing organs) underlie grassland regeneration and community succession following ecosystem perturbations. Disturbances of nitrogen (N) enrichment, overgrazing, wildfire, and drought substantially affect grassland ecosystem succession and aboveground productivity.

Methods: To understand the magnitude and direction of the disturbances on the belowground bud banks, we conducted a meta-analysis on 46 peer-reviewed studies published from 1980 to 2023.

View Article and Find Full Text PDF

Ecogenomic insights into the resilience of keystone Blastococcus Species in extreme environments: a comprehensive analysis.

BMC Genomics

January 2025

Department of Biological and Chemical Engineering, USCR Molecular Bacteriology and Genomics, University of Carthage, National Institute of Applied Sciences and Technology, Tunis, 2080, Tunisia.

Background: The stone-dwelling genus Blastococcus plays a key role in ecosystems facing extreme conditions such as drought, salinity, alkalinity, and heavy metal contamination. Despite its ecological significance, little is known about the genomic factors underpinning its adaptability and resilience in such harsh environments. This study investigates the genomic basis of Blastococcus's adaptability within its specific microniches, offering insights into its potential for biotechnological applications.

View Article and Find Full Text PDF

In recent decades, the global climate has changed mainly due to human-induced causes and realizing their manifestations in the forms of extreme events such as droughts, floods, heat stress, and variability in rainfall. Arid and semi-arid ecosystems are sensitive to changes in climate variability, including the Borana zone. This study was therefore initiated to assess how vulnerable pastoral and agro-pastoral livelihoods are to climate change, as well as to estimate the effects, and pinpoint potential response measures that could be implemented in the study area.

View Article and Find Full Text PDF

Salinization is a significant global issue causes irreversible damage to plants by reducing osmotic potential, inhibiting seed germination, and impeding water uptake. Seed germination, a crucial step towards the seedling stage is regulated by several hormones and genes, with the balance between abscisic acid and gibberellin being the key mechanism that either promotes or inhibits this process. Additionally, mucilage, a gelatinous substance, is known to provide protection against drought, herbivory, soil adhesion, and seed sinking.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!