Objectives: To differentiate OCVM from other orbital lesions using structural MRI.
Methods: This IRB-approved a historical-prospective cohort single-center analysis of a prospective cohort that included consecutive adult patients presenting with an orbital lesion undergoing a 3T MRI before surgery from December 2015 to May 2021. Two readers blinded to all data read all MRIs assessing structural MRI characteristics. A univariate analysis followed by a stepwise multivariate analysis identified structural MRI features showing the highest sensitivity and specificity when diagnosing OCVM.
Results: One hundred ninety-one patients with 30/191 (16%) OCVM and 161/191 (84%) other orbital lesions were included. OCVM were significantly more likely to present with a higher signal intensity than that of the cortex on T2WI: 26/29 (89.7%) versus 28/160 (17.5%), p < 0.001, or with a chemical shift artifact (CSA): 26/29 (89.7%) versus 16/155 (10.3%), p < 0.001, or to present with a single starting point of enhancement, as compared to other orbital lesions: 18/29 (62.1%) versus 4/159 (2.5%), p = 0.001. The step-wise analysis identified 2 signatures increasing performances. Signature 1 combined a higher signal intensity than that of the cortex on T2WI and a CSA. Signature 2 included these two features and the presence of a single starting point of enhancement. Sensitivity, specificity, and accuracy were 0.83, 0.94, and 0.92 for signature 1 and 0.97, 0.93, and 0.93 for signature 2, respectively.
Conclusion: Structural MRI yields high sensitivity and specificity when diagnosing OCVM.
Key Points: • Structural MRI shows high sensitivity and specificity when diagnosing orbital cavernous venous malformation. • We identified two signatures combining structural MRI features which might be used easily in routine clinical practice. • The combination of higher signal intensity of the lesion as compared to the cortex on T2WI and of a chemical shift artifact yields a sensitivity and specificity of 0.83 and 0.94 for the diagnosis of orbital cavernous venous malformation, respectively.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00330-022-09163-x | DOI Listing |
Patterns (N Y)
December 2024
Medical Robot Research Institute, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
This study developed an artificial intelligence (AI) system using a local-global multimodal fusion graph neural network (LGMF-GNN) to address the challenge of diagnosing major depressive disorder (MDD), a complex disease influenced by social, psychological, and biological factors. Utilizing functional MRI, structural MRI, and electronic health records, the system offers an objective diagnostic method by integrating individual brain regions and population data. Tested across cohorts from China, Japan, and Russia with 1,182 healthy controls and 1,260 MDD patients from 24 institutions, it achieved a classification accuracy of 78.
View Article and Find Full Text PDFNMR Biomed
February 2025
Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
Susceptibility-weighted imaging (SWI) has been widely used in clinical contexts, in which the speed of acquisition is frequently a critical issue. In this study, we aim to test the feasibility of a deep learning (DL)-based reconstruction method for accelerating SWI acquisition in clinical settings. A total of 61 subjects were consecutively enrolled.
View Article and Find Full Text PDFRadiol Med
January 2025
Department of Radiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China.
Functional plasticity has been demonstrated in multiple sclerosis (MS) studies. However, the intrinsic brain activity complexity alterations remain unclear. Here, using a coarse-graining time-series procedure algorithm, we obtained multiscale entropy (MSE) from a retrospective multi-centre dataset (208 relapsing-remitting MS patients and 228 healthy controls).
View Article and Find Full Text PDFCurr Pain Headache Rep
January 2025
Department of Neurology, Danish Headache Center, Copenhagen University Hospital - Rigshospitalet, Valdemar Hansens Vej 5, Entrance 1A, 2600 Glostrup, Copenhagen, Denmark.
Purpose Of Review: To evaluate the available studies on structural magnetic resonance imaging (MRI) of post-traumatic headache (PTH).
Recent Findings: A systematic search of PubMed and Embase databases (from inception to February 1, 2024) identified nine relevant structural MRI studies. These studies included adult participants diagnosed with acute or persistent PTH in adherence with any edition of the International Classification of Headache Disorders.
Background: Annually, approximately 7.6 million individuals experience a new ischemic stroke, and roughly 25% of all ischemic strokes are cardiogenic in origin, carrying a high risk of recurrence, death and disability. To prevent future ischemic strokes, especially in younger individuals, it is crucial to detect and treat direct and indirect cardioembolic sources.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!