A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Bioinspired Nanonetwork Hydroxyapatite from Block Copolymer Templated Synthesis for Mechanical Metamaterials. | LitMetric

Inspired by Mantis shrimp, this work aims to suggest a bottom-up approach for the fabrication of nanonetwork hydroxyapatite (HAp) thin film using self-assembled polystyrene--polydimethylsiloxane (PS--PDMS) block copolymer (BCP) with a diamond nanostructure as a template for templated sol-gel reaction. By introducing poly(vinylpyrrolidone) (PVP) into precursors of calcium nitrate tetrahydrate and triethyl phosphite, which limits the growth of forming HAp nanoparticles, well-ordered nanonetwork HAp thin film can be fabricated. Based on nanoindentation results, the well-ordered nanonetwork HAp shows high energy dissipation compared to the intrinsic HAp. Moreover, the uniaxial microcompression test for the nanonetwork HAp shows high energy absorption per volume and high compression strength, outperforming many cellular materials due to the topologic effect of the well-ordered network at the nanoscale. This work highlights the potential of exploiting BCP templated synthesis to fabricate ionic solid materials with a well-ordered nanonetwork monolith, giving rise to the brittle-to-ductile transition, and thus appealing mechanical properties with the character of mechanical metamaterials.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsnano.2c06040DOI Listing

Publication Analysis

Top Keywords

well-ordered nanonetwork
12
nanonetwork hap
12
nanonetwork hydroxyapatite
8
block copolymer
8
templated synthesis
8
mechanical metamaterials
8
hap thin
8
thin film
8
hap high
8
high energy
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!