Mechanisms for enhancing interfacial phonon thermal transport by large-size nanostructures.

Phys Chem Chem Phys

College of Energy and Power Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, Jiangsu 210016, China.

Published: February 2023

Employing nanostructures has been experimentally demonstrated to be an effective way of enhancing the phonon thermal transport across solid-solid interfaces, whereas the strengthening mechanism by large-size nanostructures is still unclear. In this paper, a novel theoretical method for simulating the heat transfer characteristics of the solid-solid contact interface containing large-size nanostructures is developed by combining the lattice Boltzmann method and molecular dynamics. The phonon transport features of the planar interface and the nanostructured ones are compared. The effects of the nanostructure shape and size on the interfacial phonon thermal transport are investigated, and mechanisms for enhancing interfacial phonon thermal transport by large-size nanostructures are revealed. The results show that the phonon transport at the large-size nanostructured interface is distributed regionally and has a pronounced directionality. The thermal transport enhancement of the large-size nanostructured interface is primarily achieved by increasing the interfacial contact area with respect to the planar interface, which increases the probability of phonon scattering at the interface and forms a thermal conduction pathway. The interfacial thermal transfer enhancement of large-size nanostructures is also influenced by the interfacial shape and the ballistic transport effect. There exist the optimal shape and size of the nanostructures to maximize the thermal transport across the solid-solid contact interface.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d2cp02887eDOI Listing

Publication Analysis

Top Keywords

thermal transport
24
large-size nanostructures
20
phonon thermal
16
interfacial phonon
12
transport large-size
12
transport
9
mechanisms enhancing
8
enhancing interfacial
8
thermal
8
transport solid-solid
8

Similar Publications

Molecular dynamics work on thermal conductivity of SiGe nanotubes.

J Mol Model

January 2025

School of Mechanics and Safety Engineering, Zhengzhou University, Zhengzhou, 450001, People's Republic of China.

Context: SiGe nanotubes (SiGeNTs) hold significant promise for applications in nanosolar cells, optoelectronic systems, and interconnects, where thermal conductivity is critical to performance. This study investigates the effects of length, diameter, temperature, and axial strain on the thermal conductivity of armchair and zigzag SiGeNTs through molecular dynamics simulations. Results indicate that thermal conductivity increases with sample length due to ballistic heat transport and decreases with temperature as phonon scattering intensifies.

View Article and Find Full Text PDF

Along with the development of miniaturization, integration, and high power of electronic chips in the 5G and artificial intelligence era and their urgent need for technologies enabled to solve high heat flux dissipation in limited space, investigating bioinspired extreme superwettability surfaces with high-efficiency condensation heat transfer (CHT) performance has attracted great interest in academic and industrial communities. Compared with filmwise condensation of flat hydrophilic surfaces featured with continuous liquid films, dropwise condensation of flat hydrophobic surfaces is a more efficient type of energy transport way. However, discrete condensate drops can only shed off the hydrophobic flat surfaces under gravity until their sizes reach the capillary length of liquid, e.

View Article and Find Full Text PDF

Hepatocellular carcinoma (HCC) is by far the predominant malignant liver cancer, with both high morbidity and mortality. Early diagnosis and surgical resections are imperative for improving the survival of HCC patients. However, limited by clinical diagnosis methods, it is difficult to accurately distinguish tumor tissue and its boundaries in the early stages of cancer.

View Article and Find Full Text PDF

The development of stable, high-performance electrolytes is essential to addressing the safety concerns and limited lifespan caused by the thermal and chemical instability of traditional organic carbonate-based electrolytes in lithium-ion batteries (LIBs). This study examined the potential of mixed solvent systems, specifically ethyl methyl carbonate (EMC) and tetramethylene sulfone (TMS), to modify ion solvation and improve ionic conductivity in LIB electrolytes. Through molecular dynamics simulations, we investigated the solvation structure and transport properties of lithium ions (Li) in these solvent environments.

View Article and Find Full Text PDF

2D materials possess weak inter-layer van der Waals bonding, allowing them to exist as different polymorphs depending on the stacking sequence of the layers. Herein, the thermal conductivities of the 2H-NbSe and 2H-3R-NbSe polymorphs by conducting experimental measurements and theoretical analysis are comparatively studied. Owing to its 1.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!