3D hierarchical Cu@Ag nanostructure as a current collector for dendrite-free lithium metal anode.

Dalton Trans

Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, School of Physics and Electronic Engineering, Harbin Normal University, Harbin 150025, PR China.

Published: November 2022

Lithium metal is considered to be the best candidate for rechargeable batteries due to its unique advantages. But the instability and the uncontrollable dendrites of the lithium metal anode greatly limit its commercialization. In recent years, in order to obtain stable Li metal anodes, various three-dimensional (3D) current collectors have been proposed. However, for traditional 3D current collectors, its advantages in structure still need to be improved. Therefore, the 3D hierarchical Cu@Ag nanostructure consisting of Ag-decorated Cu nanowires grown on Cu foam as a current collector (denoted as 3D HCu@Ag) is well designed and successfully prepared. Cu nanowires were grown on Cu foam to form a 3D hierarchical current collector to further increase the specific surface area and reduce the local current density, thus suppressing the formation of dendrites. Ag nanoparticles were grown on the surface of Cu nanowires by displacement reaction, which can reduce the overpotential of lithium deposition. Under the synergistic effect of optimal structure and Ag surface modification, 3D HCu@Ag exhibits extremely excellent performance. As a result, the Li-3D HCu@Ag symmetrical cell exhibits a lifetime of 1500 h with a very low voltage hysteresis. More importantly, in practical application, the Li-3D HCu@Ag||LFP full cell can cycle stably for 200 cycles at 1C and maintain an extremely high-capacity retention rate of 78.5%. The experiment results show that this design provides a new idea for the lithiophilic 3D current collector for stable lithium metal anode.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d2dt02937eDOI Listing

Publication Analysis

Top Keywords

current collector
16
lithium metal
16
metal anode
12
hierarchical cu@ag
8
cu@ag nanostructure
8
current collectors
8
nanowires grown
8
grown foam
8
current
7
lithium
5

Similar Publications

Aqueous zinc-ion batteries are an appealing electrochemical energy storage solution due to their affordability and safety. Significant attention has been focused on vanadium oxide cathode materials for ZIBs, owing to their high specific capacity, unique layered or tunnel structures, and low cost. Compared to traditional methods for preparing and assembling electrode materials, direct current (DC) magnetron sputtering allows direct synthesis and uniform deposition on current collectors, offering advantages such as simplicity, mild reaction conditions, and strong film adhesion.

View Article and Find Full Text PDF

Optimizing LiNO Conversion through a Defective Carbon Matrix as Catalytic Current Collectors for Highly Durable and Fast-Charging Li Metal Batteries.

Nano Lett

January 2025

Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.

Lithium nitrate (LiNO) stands as an effective electrolyte additive, mitigating the degradation of Li metal anodes by forming a LiN-rich solid electrolyte interphase (SEI). However, its conversion kinetics are impeded by energy-consuming eight-electron transfer reactions. Herein, an isoreticular metal-organic framework-8-derived carbon is incorporated into the carbon cloth (RMCC) as a catalytic current collector to regulate the LiNO conversion kinetics and boost LiN generation inside the SEI.

View Article and Find Full Text PDF

High-performance liquid chromatography (HPLC) is an invaluable technique that has been used for many decades for the separation of various molecules. The reproducible collection of eluates from these systems has been significantly improved via its automation by fraction collection systems. Current commercially available fraction collectors are not easily customizable, incompatible with other platforms, and come with a large cost barrier making them inaccessible to many researchers.

View Article and Find Full Text PDF

Water electrolysis recognizes nickel foam (NF) as an effective current collector due to its excellent conductivity. However, recent studies highlighted NF's effect on the efficacy of various electrocatalytic reactions, primarily due to the presence of electroactive chemical species at its interface. In contrast, numerous reports suggested that NF has a negligible impact on overall electrocatalytic activity.

View Article and Find Full Text PDF

Realizing an Energy-Dense Potassium Metal Battery at -40 °C via an Integrated Anode-Free and Dual-Ion Strategy.

J Am Chem Soc

January 2025

School of Chemistry, Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, Beihang University, Beijing 100191, China.

Potassium (K)-based batteries hold great promise for cryogenic applications owing to the small Stokes radius and weak Lewis acidity of K. Nevertheless, energy-dense (>200 W h kg) K batteries under subzero conditions have seldom been reported. Here, an over 400 W h kg K battery is realized at -40 °C via an anode-free and dual-ion strategy, surpassing these state-of-the-art K batteries and even most Li/Na batteries at low temperatures (LTs).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!