In this study, we investigated the transcriptional spatio-temporal dynamics of the taste 1 receptor () gene family repertoire in seabream ( []), during larval ontogeny and in adult tissues. In early larval development, expression arises heterochronously, i.e. the extraoral taste-related perception in the gastrointestinal tract (GIT) anticipates first exogenous feeding (at 9 days post hatching [dph]), followed by the buccal/intraoral perception from 14 dph onwards, supporting the hypothesis that the early onset of the molecular machinery underlying expression in the GIT is not induced by food but rather genetically hardwired. During adulthood, we characterized the expression patterns of within specific tissues ( = 4) distributed in oropharingeal, GIT and brain regions substantiating their functional versatility as chemosensory signaling players to a variety of biological functions beyond oral taste sensation. Further, we provided for the first time direct evidences in fish for mRNA co-expression of a subset of genes (mostly , i.e. the common subunit of the heterodimeric T1R complexes for the detection of "sweet" and "umami" substances), with the selected gut peptides ghrelin (), cholecystokinin (), hormone peptide yy () and proglucagon (). Each peptide defines the enteroendocrine cells (ECCs) identity, and establishes on morphological basis, a direct link for T1R chemosensing in the regulation of fish digestive processes. Finally, we analyzed the spatial gene expression patterns of 2 taste signaling components functionally homologous to the mammalian subunit gustducin, namely and , and demonstrated their co-localization with the in EECs, thus validating their direct involvement in taste-like transduction mechanisms of the fish GIT. In conclusion, data provide new insights in the evolutionary conservation of gut sensing in fish suggesting a conserved role for nutrient sensors modulating entero-endocrine secretion.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9563615 | PMC |
http://dx.doi.org/10.1016/j.aninu.2022.08.010 | DOI Listing |
FEBS J
January 2025
Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland.
Rhizobium etli is a nitrogen-fixing bacterium that encodes two l-asparaginases. The structure of the inducible R. etli asparaginase ReAV has been recently determined to reveal a protein with no similarity to known enzymes with l-asparaginase activity, but showing a curious resemblance to glutaminases and β-lactamases.
View Article and Find Full Text PDFBiol Sex Differ
January 2025
Department of Laboratory Medicine and Pathology, School of Medicine, University of Washington, Seattle, WA, 98195, USA.
Background: X chromosome inactivation (XCI) is a female-specific process in which one X chromosome is silenced to balance X-linked gene expression between the sexes. XCI is initiated in early development by upregulation of the lncRNA Xist on the future inactive X (Xi). A subset of X-linked genes escape silencing and thus have higher expression in females, suggesting female-specific functions.
View Article and Find Full Text PDFBMC Plant Biol
January 2025
Maize and Millet Research Institute, Yousafwala, Sahiwal, Pakistan.
Heat stress poses a significant challenge for maize production, especially during the spring when high temperatures disrupt cellular processes, impeding plant growth and development. The B-cell lymphoma-2 (Bcl-2) associated athanogene (BAG) gene family is known to be relatively conserved across various species. It plays a crucial role as molecular chaperone cofactors that are responsible for programmed cell death and tumorigenesis.
View Article and Find Full Text PDFBMC Genomics
January 2025
Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agriculture Sciences in Weifang, Weifang, Shandong, 261325, China.
Background: The evolution and development of flowers are biologically essential and of broad interest. Maize and sorghum have similar morphologies and phylogeny while harboring different inflorescence architecture. The difference in flower architecture between these two species is likely due to spatiotemporal gene expression regulation, and they are a good model for researching the evolution of flower development.
View Article and Find Full Text PDFSci Rep
January 2025
School of Earth and Environmental Sciences, Cardiff University, Main Building, Park Place, Cardiff, CF10 3AT, UK.
Dienia is a small, pantropical genus of epidendroid Malaxideae orchids. The floral lip is upwardly directed and does not serve as a landing platform for pollinators. This role has been assumed by sepals and/or gynostemium or whole inflorescence.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!