IgA vasculitis update: Epidemiology, pathogenesis, and biomarkers.

Front Immunol

Department of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha, China.

Published: October 2022

Immunoglobulin A vasculitis (IgAV), formerly known as Henoch-Schönlein purpura, is the most common systemic vasculitis in children, characterized by diverse clinical manifestations with a wide spectrum ranging from isolated cutaneous vasculitis to systemic involvement. The incidence of IgAV is geographically and ethnically variable, with a prevalence in autumn and winter, suggesting a driving role that genetic and environmental factors play in the disease. Although IgAV has a certain degree of natural remission, it varies widely among individuals. Some patients can suffer from severe renal involvement and even progress to end-stage renal disease. Its pathogenesis is complex and has not been fully elucidated. The formation of galactose-deficient IgA1 (Gd-IgA1) and related immune complexes plays a vital role in promoting the occurrence and development of IgAV nephritis. In addition, neutrophil activation is stimulated through the binding of IgA to the Fc alpha receptor I expressed on its surface, resulting in systemic vascular inflammation and tissue damage. Starting from the epidemiological characteristics, this article will review the role of immunological factors such as Gd-IgA1, autoantibodies, circulating immune complexes, complement system, cellular immunization, and the contributions of environmental and genetic factors in the pathogenesis of IgAV, and conclude with the major biomarkers for IgAV.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9574357PMC
http://dx.doi.org/10.3389/fimmu.2022.921864DOI Listing

Publication Analysis

Top Keywords

immune complexes
8
igav
6
iga vasculitis
4
vasculitis update
4
update epidemiology
4
epidemiology pathogenesis
4
pathogenesis biomarkers
4
biomarkers immunoglobulin
4
immunoglobulin vasculitis
4
vasculitis igav
4

Similar Publications

Potential and development of cellular vesicle vaccines in cancer immunotherapy.

Discov Oncol

January 2025

Department of Breast Surgery, The First Affiliated Hospital of Harbin Medical University, No. 23, Youzheng Street, Nangang District, Harbin, 150001, China.

Cancer vaccines are promising as an effective means of stimulating the immune system to clear tumors as well as to establish immune surveillance. In this paper, we discuss the main platforms and current status of cancer vaccines and propose a new cancer vaccine platform, the cytosolic vesicle vaccine. This vaccine has a unique structure that can integrate antigen and adjuvant carriers to improve the delivery efficiency and immune activation ability, which brings new ideas for cancer vaccine design.

View Article and Find Full Text PDF

The correct synthesis and degradation of proteins are vital for numerous biological processes in the human body, with protein degradation primarily facilitated by the ubiquitin-proteasome system. The SKP1-CUL1-F-box (SCF) E3 ubiquitin ligase, a member of the Cullin-RING E3 ubiquitin ligase (CRL) family, plays a crucial role in mediating protein ubiquitination and subsequent 26S proteasome degradation during normal cellular metabolism. Notably, SCF is intricately linked to the pathogenesis of various diseases, including malignant tumors.

View Article and Find Full Text PDF

Objectives: To study neutrophil gelatinase-associated lipocalin (NGAL) levels in peripheral blood in SLE, and to propose a mechanism by which neutrophils secrete NGAL on stimulation with immune complexes (IC).

Methods: NGAL was measured by ELISA in two independent Swedish SLE cohorts acting as exploratory and validation cohort (n=124 and n=308, respectively), disease controls (n=38) and healthy controls (n=77). NGAL levels were measured in supernatant from IC-stimulated neutrophils in the presence or absence of a toll-like receptor 8 inhibitor (TLR8i).

View Article and Find Full Text PDF

Assembly and functional mechanisms of plant NLR resistosomes.

Curr Opin Struct Biol

January 2025

School of Life Sciences, Westlake University, Institute of Biology, Westlake Institute for Advanced Study, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, Zhejiang, China. Electronic address:

Nucleotide-binding and leucine-rich repeat (NLR) proteins are essential intracellular immune receptors in both animal and plant kingdoms. Sensing of pathogen-derived signals induces oligomerization of NLR proteins, culminating in the formation of higher-order protein complexes known as resistosomes in plants. The NLR resistosomes play a pivotal role in mediating the plant immune response against invading pathogens.

View Article and Find Full Text PDF

Development of antibodies for clinical use is a complex process involving numerous aspects, with antigen specificity being the most important. Initially, polyclonal antibodies, that can recognize multiple specific and nonspecific antigens (polyreactive), were developed and were very effective in the treatments. Later on, the polyspecificity/polyreactivity of these polyclonal antibodies (binding to multiple antigens) raised concerns about therapeutic efficacy because of their nonspecific interactions and challenges, such as development of immune complexes, batch-to-batch variability.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!