Monoamine oxidase B (MAO-B) metabolizes monoamines such as dopamine regarding neural transmission and controls its level in the mammalian's brain. When MAO-B metabolizes dopamine abnormally, normal neurotransmission does not occur, and central nervous system disorders such as Parkinson's disease may develop. Although several MAO inhibitors have been developed, most of them have no selectivity between monoamine oxidase A (MAO-A) and MAO-B, or they work irreversibly against the enzyme. This report describes the first case of screening of -arylated heliamine derivatives to develop novel MAO-B selective inhibitors that can be synthesized concisely by microwave-assisted Pd nanoparticle-catalyzed Buchwald-Hartwig amination. We discovered that the derivatives , , and display inhibitory activity against MAO-B with IC values of 1.55, 13.5, and 5.08 μM, respectively.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9575162PMC
http://dx.doi.org/10.1021/acsmedchemlett.2c00228DOI Listing

Publication Analysis

Top Keywords

monoamine oxidase
12
inhibitory activity
8
-arylated heliamine
8
mao-b metabolizes
8
mao-b
5
design synthesis
4
synthesis monoamine
4
oxidase selective
4
selective inhibitory
4
activity -arylated
4

Similar Publications

Chronic stress exposure has been widely recognized as a significant contributor to numerous central nervous system (CNS) disorders, leading to debilitating behavioral changes such as anxiety, depression, and cognitive impairments. The prolonged activation of the hypothalamic-pituitary-adrenal (HPA) axis during chronic stress disrupts the neuroendocrine balance and has detrimental effects on neuronal function and survival. () Gaertn.

View Article and Find Full Text PDF

Monoamine oxidase B (MAO-B) inhibitors are widely used as part of combination drug therapy for Parkinson's disease. As demonstrated in both in vitro and in vivo experiments, the monoterpenoid Prottremine and some of its derivatives exhibit high antiparkinsonian activity. In this study, the inhibitory activity of Prottremine and its derivatives (including 14 new 9-- and -derivatives) against MAO-A and MAO-B enzymes has been investigated for the first time.

View Article and Find Full Text PDF

Monoamine oxidase B (MAO-B) is a key enzyme in the mitochondrial outer membrane, pivotal for the oxidative deamination of biogenic amines. Its overexpression has been implicated in the pathogenesis of several cancers, including glioblastoma and colorectal, lung, renal, and bladder cancers, primarily through the increased production of reactive oxygen species (ROS). Inhibition of MAO-B impedes cell proliferation, making it a potential therapeutic target.

View Article and Find Full Text PDF

The gut-brain axis underlying hepatic encephalopathy in liver cirrhosis.

Nat Med

January 2025

Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China.

Up to 50-70% of patients with liver cirrhosis develop hepatic encephalopathy (HE), which is closely related to gut microbiota dysbiosis, with an unclear mechanism. Here, by constructing gut-brain modules to assess bacterial neurotoxins from metagenomic datasets, we found that phenylalanine decarboxylase (PDC) genes, mainly from Ruminococcus gnavus, increased approximately tenfold in patients with cirrhosis and higher in patients with HE. Cirrhotic, not healthy, mice colonized with R.

View Article and Find Full Text PDF

Angelica gigas Nakai (AGN) root is a medicinal herbal widely used in traditional medicine in Korea. AGN root ethanolic extracts have been marketed as dietary supplements in the United States for memory health and pain management. We have recently reviewed the pharmacokinetics (PK) and first-pass hepatic metabolism of ingested AGN supplements in humans for the signature pyranocoumarins decursin (D, C 1x), decursinol angelate (DA, C ~ 10x) and their common botanical precursor and hepatic metabolite decursinol (DOH, C ~ 1000x).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!