Background: Patients with mid-stage HCC (hepatocellular carcinoma) may benefit from transcatheter arterial chemoembolization (TACE). However, patient efficacy varies widely, and the detailed assessment index is unknown. The most general methylation alteration in mRNA (Messenger RNA), N6-methyladenosine (m6A), is controlled by the m6A regulator, which is associated with the emergence of tumors. To include the molecular causes of cancer, competition with ceRNA (endogenous RNA) networks is crucial. However, the exact processes they contribute to TACE HCC remain uncertain. The purpose of this study was tantamount to investigating the possible function of ceRNA networks and m6A regulators in patients with TACE HCC.

Methods: Genes Associated with m6A were discovered using the TACE GEO (Gene Expression Omnibus) dataset. An additional estimate of M6A-associated DEGs (differentially expressed genes) was used to create a predictive response model, which is required. LncRNA-miRNA and miRNA-mRNA interactions were then predicted, the regulatory ceRNA network was set up using Cytoscape software, and target genes were identified using GEPIA online analysis. The connection between immunological checkpoints, immune cell marker genes, and target genes for immune cells was also examined.

Results: The detection of 4 m6A-associated DEGs, the development and evaluation of 2 Machine learning models, and the development of risk models that accurately predicted the response rate of specific patients. Additionally, we obtained two miRNAs (micro RNAs)and six lncRNAs (Long non-coding RNAs), forming an 8-pair ceRNA network, and the target gene LRPPRC deletion of one copy number and gene expression was highly correlated with the amount of Tregs immune cells. LRPPRC was related positively with NRP1, IRF5, and ITGAM and negatively with CCR7 and CD8B among immune cell marker genes. We also discovered that LRPPRC correlates positively with immune checkpoint CD274 cells.

Conclusion: The response of HCC patients to TACE therapy may be predicted using a model based on four gene expression data. We also developed a ceRNA network for TACE HCC related to m6A, which offered suggestions for more research into its molecular processes and possible prognostic indicators.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9573888PMC
http://dx.doi.org/10.1016/j.heliyon.2022.e10931DOI Listing

Publication Analysis

Top Keywords

gene expression
12
cerna network
12
hepatocellular carcinoma
8
transcatheter arterial
8
arterial chemoembolization
8
tace hcc
8
patients tace
8
m6a-associated degs
8
target genes
8
immune cell
8

Similar Publications

Proximity Ligation Assay to Study Oncogene-Derived Transcription-Replication Conflicts.

J Vis Exp

January 2025

Institute of Biochemistry and Molecular Biology, Hengyang Medical School, University of South China; National Health Commission Key Laboratory of Birth Defect Research and Preventio, Hunan Provincial Maternal and Child Health Care Hospital;

Both DNA replication and RNA transcription utilize genomic DNA as their template, necessitating spatial and temporal separation of these processes. Conflicts between the replication and transcription machinery, termed transcription-replication conflicts (TRCs), pose a considerable risk to genome stability, a critical factor in cancer development. While several factors regulating these collisions have been identified, pinpointing primary causes remains difficult due to limited tools for direct visualization and clear interpretation.

View Article and Find Full Text PDF

Motivation: Histone modifications play an important role in transcription regulation. Although the general importance of some histone modifications for transcription regulation has been previously established, the relevance of others and their interaction is subject to ongoing research. By training Machine Learning models to predict a gene's expression and explaining their decision making process, we can get hints on how histone modifications affect transcription.

View Article and Find Full Text PDF

Only a few human ovarian endometrioid carcinoma cell lines are currently available, partly due to the difficulty of establishing cell lines from low-grade cancers. Here, using a cell immortalization strategy consisting of i) inactivation of the p16-pRb pathway by constitutive expression of mutant cyclin-dependent kinase 4 (R24C) (CDK4) and cyclin D1, and ii) acquisition of telomerase reverse transcriptase (TERT) activity, we established a human ovarian endometrioid carcinoma cell line from a 46-year-old Japanese woman. That line, designated JFE-21, has proliferated continuously for over 6 months with a doubling time of ~ 55 h.

View Article and Find Full Text PDF

2-dodecyl-6-methoxycyclohexa-2,5-diene-1,4-dione protects against MPP-induced neurotoxicity by ameliorating oxidative stress, apoptosis and autophagy in SH-SY5Y cells.

Metab Brain Dis

January 2025

Key Laboratory of Longevity and Aging-Related Disease of Chinese Ministry of Education, Center for Translational Medicine, School of Basic Medical Sciences, Guangxi Medical University, Nanning, Guangxi, China.

2-dodecyl-6-methoxycyclohexa-2,5-diene-1,4-dione (DMDD) is a cyclohexanedione compound extracted from the roots of Averrhoa carambola L. Several studies have documented its beneficial effects on diabetes, Alzheimer's disease, and cancer. However, its potential neuroprotective effects on Parkinson's disease (PD) have not yet been explored.

View Article and Find Full Text PDF

The anaerobic bacterium Clostridium cellulovorans is a promising candidate for the sustainable production of biofuels and platform chemicals due to its cellulolytic properties. However, the genomic engineering of the species is hampered because of its poor genetic accessibility and the lack of genetic tools. To overcome this limitation, a protocol for triparental conjugation was established that enables the reliable transfer of vectors for markerless chromosomal modification into C.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!