OFP011 Cyclic Peptide as a Multifunctional Agonist for Opioid/Neuropeptide FF Receptors with Improved Blood-Brain Barrier Penetration.

ACS Chem Neurosci

Key Laboratory of Preclinical Study for New Drugs of Gansu Province, and Institute of Physiology, School of Basic Medical Sciences, and State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University, 199 Donggang West Road, Lanzhou 730000, P. R. China.

Published: November 2022

Mounting evidence indicates that the neuropeptide FF (NPFF) system is involved in the side effects of opioid usage, including antinociceptive tolerance, hyperalgesia, abuse, constipation, and respiratory depression. Our group recently discovered that the multitarget opioid/NPFF receptor agonist DN-9 exhibits peripheral antinociceptive activity. To improve its metabolic stability, antinociceptive potency, and duration, in this study, we designed and synthesized a novel cyclic disulfide analogue of DN-9, OFP011, and examined its bioactivity through cyclic adenosine monophosphate (cAMP) functional assays and behavioral experiments. OFP011 exhibited multifunctional agonistic effects at the μ-opioid and the NPFF and NPFF receptors and partial agonistic effects at the δ- and κ-opioid , as determined the cAMP functional assays. Pharmacokinetic and pharmacological experiments revealed improvement in its blood-brain barrier permeability after systemic administration. In addition, subcutaneous OFP011 exhibited potent and long-lasting antinociceptive activity the central μ- and κ-opioid receptors, as observed in different physiological and pathological pain models. At the highest antinociceptive doses, subcutaneous OFP011 exhibited limited tolerance, gastrointestinal transit, motor coordination, addiction, reward, and respiration depression. Notably, OFP011 exhibited potent oral antinociceptive activities in mouse models of acute, inflammatory, and neuropathic pain. These results suggest that the multifunctional opioid/NPFF receptor agonists with improved blood-brain barrier penetration are a promising strategy for long-term treatment of moderate to severe nociceptive and pathological pain with fewer side effects.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acschemneuro.2c00442DOI Listing

Publication Analysis

Top Keywords

ofp011 exhibited
16
blood-brain barrier
12
improved blood-brain
8
barrier penetration
8
side effects
8
opioid/npff receptor
8
antinociceptive activity
8
camp functional
8
functional assays
8
agonistic effects
8

Similar Publications

OFP011 Cyclic Peptide as a Multifunctional Agonist for Opioid/Neuropeptide FF Receptors with Improved Blood-Brain Barrier Penetration.

ACS Chem Neurosci

November 2022

Key Laboratory of Preclinical Study for New Drugs of Gansu Province, and Institute of Physiology, School of Basic Medical Sciences, and State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University, 199 Donggang West Road, Lanzhou 730000, P. R. China.

Mounting evidence indicates that the neuropeptide FF (NPFF) system is involved in the side effects of opioid usage, including antinociceptive tolerance, hyperalgesia, abuse, constipation, and respiratory depression. Our group recently discovered that the multitarget opioid/NPFF receptor agonist DN-9 exhibits peripheral antinociceptive activity. To improve its metabolic stability, antinociceptive potency, and duration, in this study, we designed and synthesized a novel cyclic disulfide analogue of DN-9, OFP011, and examined its bioactivity through cyclic adenosine monophosphate (cAMP) functional assays and behavioral experiments.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!