Distinguishing among the mechanisms underlying the spatial distribution of genetic variation resulting from the environmental or physical barriers from those arising due to simple geographic distance is challenging in complex landscapes. The Andean uplift represents one of the most heterogeneous habitats where multiple mechanisms may interact, confounding their relative roles. We explore this broad question in the leaf-cutting ant Atta cephalotes, a species that is distributed across the Andes mountains, using nuclear microsatellite markers and mtCOI gene sequences. We investigate spatial genetic divergence across the western range of the northern Andes in Colombia by testing the relative role of alternative scenarios of population divergence, including isolation by geographic distance (IBD), climatic conditions (IBE), and the physical barriers presented by the Andes mountains (IBB). Our results reveal substantial genetic differentiation among A. cephalotes populations for both types of markers, but only nuclear divergence followed a hierarchical pattern with multiple models of genetic divergence imposed by the western range. Model selection showed that the IBD, IBE (temperature and precipitation), and IBB (Andes mountains) models, often proposed as individual drivers of genetic divergence, interact, and explain up to 33% of the genetic divergence in A. cephalotes. The IBE model remained significant after accounting for IBD, suggesting that environmental factors play a more prominent role than IBB. These factors, in combination with the idiosyncratic dispersal patterns of ants, appear to determine the hierarchical patterns of gene flow. This study enriches our understanding of the forces shaping population divergence in complex habitat landscapes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/mec.16742 | DOI Listing |
Curr Issues Mol Biol
December 2024
Molecular Cell Biology, Joseph Gottlieb Kölreuter Institute for Plant Sciences, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany.
Landraces are a critical genetic resource for resilience breeding, offering solutions to prepare agriculture for the challenges posed by climate change. Their efficient utilisation depends on understanding their history and genetic relationships. The current study investigates the phylogenetic relationships of barley landraces from Algeria, varieties from the Near and Middle East, traditional landraces, and modern cultivars from Europe.
View Article and Find Full Text PDFBackground: Caryophyllaceae contains 100 genera and 3000 species, many of which are valuable both ecologically and economically. However, as past research has shown, the fundamental phylogenetic relationships of Caryophyllaceae are still debatable, and molecular dating based on chloroplast genomes has not been thoroughly examined for the entire family.
Methods: In this study, the complete chloroplast genome sequences of Arenaria kansuensis Maxim.
Mol Phylogenet Evol
December 2024
Department of Earth and Environmental Sciences, Rutgers University, Newark, NJ, USA.
Species relationships and speciation have traditionally been represented by phylogenetic trees, but not all evolutionary histories fit into bifurcating divergence models. Introgressive hybridization challenges this assumption by sometimes [or maybe often] leading to mitochondrial introgression, wherein one species' mitochondrial genome is entirely replaced by another's (mitochondrial capture). Such processes result in mitonuclear discrepancies, complicating species delimitation and phylogenetic inference.
View Article and Find Full Text PDFPLoS Genet
December 2024
Department of Computational Biology, Université de Lausanne, Lausanne, Switzerland.
Mutations can be beneficial by bringing innovation to their bearer, allowing them to adapt to environmental change. These mutations are typically unpredictable since they respond to an unforeseen change in the environment. However, mutations can also be beneficial because they are simply restoring a state of higher fitness that was lost due to genetic drift in a stable environment.
View Article and Find Full Text PDFmSphere
December 2024
Department of Microbiology, Cornell University, Ithaca, New York, USA.
Unlabelled: The bacterial genus includes species found in environmental habitats like soil and water, as well as taxa adapted to be host-associated or pathogenic. High genetic diversity may allow for this habitat flexibility, but the specific genes underlying switches between habitats are poorly understood. One lineage of has undergone a substantial habitat change by evolving from a presumed soil-dwelling ancestral state to thrive in floral nectar.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!