The present study focuses on the investigation of the interfacial bond behavior of carbon fiber-reinforced polymer (CFRP)-concrete under dry-wet sulfate cycles by double-sided shear testing. Besides, the effects of fly ash content on the interfacial failure characteristics, interfacial debonding bearing capacity, CFRP strain distribution, and interfacial shear stress peak were analyzed. The interfacial debonding capacity, maximum CFRP strain, and peak value of interfacial shear stress of the CFRP-concrete interface decreased with increasing erosion time under the sulfate dry-wet cycle's action, according to the sulfate dry-wet cycle test results. The sulfate resistance of the CFRP-concrete interface increased after the addition of fly ash. However, the final decrease amplitude of interfacial debonding capacity, CFRP maximum strain, and maximum interfacial shear stress all reduced as the fly ash content increased. The effective bond length of the interface gradually increased with increasing erosion time; however, the change in fly ash content had little effect on the effective bond length, and the final effective bond length of the samples with different fly ash content was the same. Moreover, the CFRP-concrete interfacial bearing capacity model under the sulfate dry-wet cycle was established by introducing sulfate's comprehensive influence coefficient and considering fly ash content's influence. In conclusion, the comparative analysis of the prediction model and test results revealed that the prediction model could well reflect the degradation law of interfacial debonding bearing capacity with sulfate attack time.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9581983 | PMC |
http://dx.doi.org/10.1038/s41598-022-22537-x | DOI Listing |
J Environ Manage
January 2025
School of Business, Xi'an University of Finance and Economics, Xi'an, 710100, China.
The purpose of this study is to solve the problem of ammonia (NH) release when modified magnesium slag (MMS) is used as coal mine backfill cementitious material, and to explore its chemical mechanism and put forward effective solutions. Uniaxial compressive strengths (UCS) hydration kinetics, scanning electron microscope (SEM), and thermogravimetric analysis-derivative thermogravimetry (TG-DTG), X-ray diffractometer (XRD) and other testing methods were used to study the evolution of the properties of MMS-based backfill material, which provided a scientific basis for the safe utilization of MMS. First, the chemical mechanism underlying the release of NH from MMS was identified, and it was confirmed that MgN and LiN are the main nitrogen sources.
View Article and Find Full Text PDFEnviron Pollut
January 2025
Department of Mineral Processing Engineering, Taiyuan University of Technology, Taiyuan, 030024, China.
To realize the comprehensive utilization of large amounts of high-ash coal slime and comprehensively understand the excellent performance of nutrient release and lead and cadmium adsorption of high-ash coal slime silicon composite materials, green and safe mild hydrothermal conditions (200 °C) were used to prepare the rich-rich coal slime. Zeolite/tobermorite composites (Z-TOBs) were used in this study. Batch adsorption tests and repeated extraction tests were used to determine whether silicon, potassium, and calcium nutrients of Z-TOBs have sustained release properties and are affected by pH.
View Article and Find Full Text PDFEnviron Pollut
January 2025
State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, China; Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Nanjing University of Information Science & Technology, Nanjing, 210044, China. Electronic address:
Ammonia (NH) is crucial in fine particulate matter (PM) formation, but past estimations on industrial NH emissions remain highly uncertain. In this study, the flow of NH within air pollution control devices (APCDs) were investigated basing on material flow analysis with in-situ measurements of NH concentrations at the inlets and outlets of each APCD. Then, by combing emission factors updated with recent in-situ measurements and provincial-level activity data from statistical yearbooks and associated reports, NH emissions from various industrial sources, as well as their spatial distribution across China in 2020, were evaluated.
View Article and Find Full Text PDFWaste Manag
January 2025
Qilu University of Technology (Shandong Academy of Sciences), Advanced Materials Institute, Shandong Engineering Research Centre of Municipal Sludge Disposal, Jinan 250014, China. Electronic address:
Municipal solid waste incineration fly ash (MSWIFA) is considered a hazardous solid waste, traditionally disposed by solidified landfill methods. However, solidified landfills present challenges with leaching heavy metals, polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs). To address this issue, this study examined two pretreatment methods for MSWIFA: sintering at 850℃ for 30 min and washing with three water baths (20 min each) at a 3:1 liquid-solid ratio.
View Article and Find Full Text PDFPolymers (Basel)
January 2025
School of Civil Engineering and Transportation, Northeast Forestry University, Harbin 150040, China.
This article systematically investigated the improvement effect of polypropylene fiber (PPF) on the mechanical and freeze-thaw properties of alkali-activated fly ash slag concrete (AAFSC) with high fly ash content and cured at room temperature. Fly ash and slag were used as precursors, with fly ash accounting for 80% of the total mass. A mixed solution of sodium hydroxide and sodium silicate was used as alkali activator, and short-cut PPF was added to improve the performance of AAFSC.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!