Breathing condition is an essential physiological indicator closely related to human health. Wearable flexible breath sensors for respiration pattern recognition have attracted much attention as they can provide physiological signal details for personal medical diagnosis, health monitoring, etc. However, present smart mask based on flexible breath sensors using single-mode detection can only detect a relatively small number of respiration patterns, especially lacking the ability to accurately distinguish mouth breath from nasal one. Herein, a smart face mask incorporated with a dual-sensing mode breathing sensor that can recognize up to eight human respiration patterns is fabricated. The breathing sensor uses novel three dimensional (3D) buckling carbon nanofiber mats as active materials to realize the function of pressure and temperature sensing simultaneously. The pressure model of the sensors shows a high sensitivity that are able to precisely detect pressure generated by respiratory airflow, while the temperature model can realize non-contact temperature variation caused by breath. Benefit from the capacity of real-time recognition and accurate distinguishing between mouth breath and nasal breath, the face mask is further developed to monitor the development of mouth breathing syndrome. The dual-sensing mode sensor has great potential applications in health monitoring.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9579593PMC
http://dx.doi.org/10.1038/s41598-022-21572-yDOI Listing

Publication Analysis

Top Keywords

pressure temperature
8
buckling carbon
8
respiration pattern
8
pattern recognition
8
flexible breath
8
breath sensors
8
health monitoring
8
respiration patterns
8
mouth breath
8
breath nasal
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!