A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 143

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 143
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 209
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3098
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: Attempt to read property "Count" on bool

Filename: helpers/my_audit_helper.php

Line Number: 3100

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3100
Function: _error_handler

File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

An objective evaluation method for head motion estimation in PET-Motion corrected centroid-of-distribution. | LitMetric

AI Article Synopsis

  • Head motion in brain PET studies poses significant challenges, and while various motion correction (MC) algorithms exist, assessing their effectiveness remains difficult without a clear standard of motion information.
  • Traditional evaluation metrics, like standardized uptake value (SUV), are subjective and influenced by multiple factors, complicating the assessment of MC techniques.
  • The new motion corrected centroid-of-distribution (MCCOD) algorithm provides an objective way to evaluate motion correction quality by analyzing tracer distribution without needing reconstructed PET images, and it has shown effectiveness in identifying motion errors through simulation and real study testing.

Article Abstract

Head motion presents a continuing problem in brain PET studies. A wealth of motion correction (MC) algorithms had been proposed in the past, including both hardware-based methods and data-driven methods. However, in most real brain PET studies, in the absence of ground truth or gold standard of motion information, it is challenging to objectively evaluate MC quality. For MC evaluation, image-domain metrics, e.g., standardized uptake value (SUV) change before and after MC are commonly used, but this measure lacks objectivity because 1) other factors, e.g., attenuation correction, scatter correction and parameters used in the reconstruction, will confound MC effectiveness; 2) SUV only reflects final image quality, and it cannot precisely inform when an MC method performed well or poorly during the scan time period; 3) SUV is tracer-dependent and head motion may cause increases or decreases in SUV for different tracers, so evaluating MC effectiveness is complicated. Here, we present a new algorithm, i.e., motion corrected centroid-of-distribution (MCCOD) to perform objective quality control for measured or estimated rigid motion information. MCCOD is a three-dimensional surrogate trace of the center of tracer distribution after performing rigid MC using the existing motion information. MCCOD is used to inform whether the motion information is accurate, using the PET raw data only, i.e., without PET image reconstruction, where inaccurate motion information typically leads to abrupt changes in the MCCOD trace. MCCOD was validated using simulation studies and was tested on real studies acquired from both time-of-flight (TOF) and non-TOF scanners. A deep learning-based brain mask segmentation was implemented, which is shown to be necessary for non-TOF MCCOD generation. MCCOD is shown to be effective in detecting abrupt translation motion errors in slowly varying tracer distribution caused by the motion tracking hardware and can be used to compare different motion estimation methods as well as to improve existing motion information.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.neuroimage.2022.119678DOI Listing

Publication Analysis

Top Keywords

motion
14
head motion
12
motion estimation
8
corrected centroid-of-distribution
8
brain pet
8
pet studies
8
motion mccod
8
tracer distribution
8
existing motion
8
mccod
7

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!

A PHP Error was encountered

Severity: Notice

Message: fwrite(): Write of 34 bytes failed with errno=28 No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 272

Backtrace:

A PHP Error was encountered

Severity: Warning

Message: session_write_close(): Failed to write session data using user defined save handler. (session.save_path: /var/lib/php/sessions)

Filename: Unknown

Line Number: 0

Backtrace: