Dissecting the genetic and microenvironmental factors of gastric tumorigenesis in mice.

Cell Rep

Gastric Cancer Center and Laboratory of Gastric Cancer, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China. Electronic address:

Published: October 2022

Gastric cancer (GC) is one of the most frequent and lethal malignancies in the world. However, our understanding of the mechanisms underlying its initiation and progression is limited. Here, we generate a series of primary GC models in mice with genome-edited gastric organoids, which elucidate the genetic drivers for sequential transformation from dysplasia to well-differentiated and poorly differentiated GC. Further, we find that the orthotopic GC, but not the subcutaneous GC even with the same genetic drivers, display remote metastasis, suggesting critical roles of the microenvironment in GC metastasis. Through single-cell RNA-seq analyses and functional studies, we show that the interaction between fibronectin 1 on stomach-specific macrophages and integrin a6β4 on GC cells promotes remote metastases. Taken together, our studies propose a strategy to model GC and dissect the genetic and microenvironmental factors driving the full-range gastric tumorigenesis.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.celrep.2022.111482DOI Listing

Publication Analysis

Top Keywords

genetic microenvironmental
8
microenvironmental factors
8
gastric tumorigenesis
8
genetic drivers
8
dissecting genetic
4
gastric
4
factors gastric
4
tumorigenesis mice
4
mice gastric
4
gastric cancer
4

Similar Publications

Background: Several clinical trials have shown that immunotherapy plays a pivotal role in the treatment of patients with metastatic synovial sarcoma. Immune-related genes (IRGs) have been demonstrated to predict the immunotherapy response in certain malignant tumours. However, the clinical significance of IRGs in patients with synovial sarcoma (SS) is still unclear.

View Article and Find Full Text PDF

Multiomics integration and machine learning reveal prognostic programmed cell death signatures in gastric cancer.

Sci Rep

December 2024

Clinical Teaching Hospital of Medical School, Nanjing Children's Hospital, Nanjing University, Nanjing, 210008, China.

Gastric cancer (GC) is characterized by notable heterogeneity and the impact of molecular subtypes on treatment and prognosis. The role of programmed cell death (PCD) in cellular processes is critical, yet its specific function in GC is underexplored. This study applied multiomics approaches, integrating transcriptomic, epigenetic, and somatic mutation data, with consensus clustering algorithms to classify GC molecular subtypes and assess their biological and immunological features.

View Article and Find Full Text PDF

Background: Small cell lung cancer (SCLC) is a highly fatal malignancy, the complex tumor microenvironment (TME) is a critical factor affecting SCLC progression. Cancer-associated fibroblasts (CAFs) are crucial components of TME, yet their role in SCLC and the underlying mechanisms during their interaction with SCLC cells remain to be determined.

Methods: Microenvironmental cell components were estimated using transcriptome data from SCLC tissue available in public databases, analyzed with bioinformatic algorithms.

View Article and Find Full Text PDF

Animals often acquire their microbial symbionts from the environment, but the mechanisms underlying how specificity of the association is achieved are poorly understood. We demonstrate that the conserved proton pump, V-type ATPase (VHA), plays a key role in the establishment of the model light-organ symbiosis between the squid Euprymna scolopes and its bacterial partner, Vibrio fischeri. Recruitment of V.

View Article and Find Full Text PDF

PGRN protects against serum deprivation-induced cell death by promoting the ROS scavenger system in cervical cancer.

Cell Death Dis

December 2024

Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, China.

Progranulin (PGRN), an autocrine growth factor with tumorigenic roles in a variety of tumors, is a putative survival factor for normal and cancer cells in vitro. However, the fundamental mechanism of PGRN-mediated survival of cancer cells suffering from various types of microenvironmental stresses, such as serum deprivation, remains unknown. We show here that serum deprivation decreases intracellular PGRN protein levels in cervical cancer cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!