Light is used to steer the motion of atoms in free space, enabling cooling and trapping of matter waves through ponderomotive forces and Doppler-mediated photon scattering. Likewise, light interaction with free electrons has recently emerged as a versatile approach to modulate the electron wave function for applications in ultrafast electron microscopy. Here, we combine these two worlds, theoretically demonstrating that matter waves can be optically manipulated via inelastic interactions with optical fields. This allows us to modulate the translational part of the wave function and produce temporally and spatially compressed atomic beam pulses. We realize such modulation through stimulated photon absorption and emission by atoms traversing phase-matching evanescent optical fields generated upon light scattering by a nanostructure and via stimulated Compton scattering in free space without any assistance from material media. Our results support optical manipulation of matter waves as a powerful tool for microscopy, spectroscopy, and exploration of fundamental phenomena associated with light-atom interactions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1126/sciadv.abq2659 | DOI Listing |
Soft Matter
January 2025
Center for Soft Condensed Matter Physics and Interdisciplinary Research & School of Physical Science and Technology, Soochow University, Suzhou 215006, P. R. China.
Traveling waves are universal in excitable systems; yet, the microscopic dynamics of wave propagation is inaccessible in conventional excitable systems. Here, we show that active colloids of Quincke rollers driven by a periodic electric field can form condensed excitable phases. Distinct from existing excitable media, condensed excitable colloids can be tuned reversibly between active liquids and active crystals in which two distinct waves can be excited, respectively.
View Article and Find Full Text PDFEur Radiol
January 2025
Department of Information Technology, Uppsala University, 75237, Uppsala, Sweden.
Objectives: The aim is to assess the feasibility and accuracy of a novel quantitative ultrasound (US) method based on global speed-of-sound (g-SoS) measurement using conventional US machines, for breast density assessment in comparison to mammographic ACR (m-ACR) categories.
Materials And Methods: In a prospective study, g-SoS was assessed in the upper-outer breast quadrant of 100 women, with 92 of them also having m-ACR assessed by two radiologists across the entire breast. For g-SoS, ultrasonic waves were transmitted from varying transducer locations and the image misalignments between these were then related analytically to breast SoS.
J Phys Condens Matter
January 2025
Institute of Engineering & Management, Department of Basic Science and Humanities, Institute of Engineering & Management, Salt Lake Electronics Complex, Sector V, Salt Lake, Kolkata 700091, India, University of Engineering & Management, University Area, Plot No. III, B/5, New Town Road, Action Area III, Newtown, Kolkata 700160, India, Calcutta, West Bengal, 700091, INDIA.
A magnetic vortex (MV) is one of the fundamental and topologically nontrivial spin textures in condensed matter physics. Magnetic vortices are usually the ground states in geometrically restricted ferromagnets with zero magnetocrystalline anisotropy. Magnetic vortices have recently been proposed for use in a variety of spintronics applications due to their resistance to thermal perturbations, flexibility in changing core polarity, simple patterning procedure, and potential uses in magnetic data storage with substantial density, sensors for the magnetic field, devices for logic operations, and other related fields.
View Article and Find Full Text PDFSoft Matter
January 2025
Univ. Bordeaux, CNRS, LOMA, UMR 5798, F-33405 Talence, France.
In 1951, G. I. Taylor modeled swimming microorganisms by hypothesizing an infinite sheet in 2D moving in a viscous medium due to a wave passing through it.
View Article and Find Full Text PDFSoft Matter
January 2025
Department of Mechanical Engineering, Clemson University, Clemson, SC 29634, USA.
Instabilities in the form of periodic or irregular waves at the fluid interface have been demonstrated in microchannel electrokinetic flows with conductivity gradients when the applied electric field is above a threshold value. Most prior studies on electrokinetic instabilities (EKI) are restricted to Newtonian fluids though many of the chemical and biological samples in microfluidic applications exhibit non-Newtonian characteristics. We present in this work an experimental study of the effects of fluid shear thinning on the development of EKI waves through the addition of a small amount of xanthan gum (XG) polymer to both the high- and low-concentration Newtonian buffer solutions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!