Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Covalent organic frameworks (COFs) have enormous potential in various applications because of their high crystallinity and superior surface area. However, it is still challenging to synthesize crystalline COFs using a convenient and effective synthetic strategy. Herein, we report a strategy to synthesize four highly crystalline imine COFs, namely, TATB-DATP-COF, PDA-TAPB-COF, OMePDA-TAPB-COF and COF-320, by polymerization with a dropwise monomer feeding method in an open system, without using additional templates or modulators. By controlling the feeding rates of the monomer, the reversibility of imine formation, defect self-healing and error correction can be improved.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d2cc04374b | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!