Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Flow boiling is a promising method for the cooling of sensitive computational and industrial components, facilitating the transportation of large quantities of heat at near-constant temperature and in a small form factor. The prevention of vapor film formation is a fundamental challenge for the enhancement of boiling systems, and an impetus therefore exists for the discovery of new techniques to segregate nucleating bubbles during their formation. Herein, we utilize the strong capillary forces generated by nanostructures to pin the liquid/vapor interface in three dimensions and thereby control the coalescence and flow interactions of developing bubbles. We demonstrate this principle on both symmetrical and asymmetrical superbiphilic microstructures, showing enhancement of peak heat transfer coefficient by 81% and 113%, respectively, when compared to the best superhydrophilic and superhydrophobic analogues. Our approach shows a potential future direction for engineered boiling micro/nanostructures, wherein bubble dynamics are directly manipulated on bespoke, three-dimensional substrates.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.nanolett.2c02915 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!