Gut microbiota transmission from mother to offspring is critical to infant gut microbiota and immune development. Mother's intestine and breast milk are rich in secretory immunoglobulin A (sIgA), which can coat a specific bacterial spectrum and may be related to bacterial transmission and colonization. Here we analyzed the microbiota and sIgA-coated bacteria of maternal fecal samples and breast milk and infant fecal samples from 19 dyads by 16S rRNA amplicon sequencing. For the sIgA-coated microbiota, both the phylogenetic diversity and the Shannon index of maternal fecal samples show a lower trend than those of infant fecal samples ( < 0.05). For beta diversity, all three samples were significantly different from each other ( < 0.05, based on permutational multivariate analysis of variance). We found that sIgA mediated a wide range of vertical transmission of trace bacteria with a relative abundance of amplicon sequence variants of more than 0.0001%. FEAST-based analysis reveals that there was an equal contribution of the maternal gut (median [IQR]; 8.75% [0.90, 62.14]) and breast milk (9.23% [1.69, 22.29]) to infant intestinal total microbiota. The 39 percent of sIgA-coated microbiota in breast milk samples provided as much as 28.49-93.84 percent of all sIgA-coated microbiota in the newborn gut. Therefore, maternal gut and breast milk sIgA-coated bacteria are essential sources of intestinal bacteria in infants. There was high individual variation in the contribution of the maternal gut and breast milk microbiota to the paired infant gut microbiota. Analysis based on the weighted transfer ratio (WTR) explained that diverse sIgA-coated bacteria are transferred from breast milk to the gut of the respective infant, mainly lactic acid bacteria, especially (WTR = 2475.5), (WTR = 2438) and (WTR = 117.71). , with a WTR of 69.35, is the key sIgA-coated bacteria that are transferred from the mother's gut to breast milk. In conclusion, sIgA mediates the vertical transmission of specific bacteria, to realize the controllable inheritance of the intestinal bacteria and function from the mother to the offspring. This provides a new basis for the screening of probiotics for infant formula addition.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d2fo01244h | DOI Listing |
J Biol Eng
January 2025
Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, VA, 24016, USA.
Extracellular vesicles (EVs) are widely investigated for their implications in cell-cell signaling, immune modulation, disease pathogenesis, cancer, regenerative medicine, and as a potential drug delivery vector. However, maintaining integrity and bioactivity of EVs between Good Manufacturing Practice separation/filtration and end-user application remains a consistent bottleneck towards commercialization. Milk-derived extracellular vesicles (mEVs), separated from bovine milk, could provide a relatively low-cost, scalable platform for large-scale mEV production; however, the reliance on cold supply chain for storage remains a logistical and financial burden for biologics that are unstable at room temperature.
View Article and Find Full Text PDFNPJ Vaccines
January 2025
ISP, INRAE, Université de Tours, Nouzilly, France.
Influenza, a major "One Health" threat, has gained heightened attention following recent reports of highly pathogenic avian influenza in dairy cattle and cow-to-human transmission in the USA. This review explores general aspects of influenza A virus (IAV) biology, its interactions with mammalian hosts, and discusses the key considerations for developing vaccines to prevent or curtail IAV infection in the bovine mammary gland and its spread through milk.
View Article and Find Full Text PDFSpectrochim Acta A Mol Biomol Spectrosc
January 2025
Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, India. Electronic address:
Milk, a complex fluid renowned for abundance of vitamins and immune-boosting antibodies, holds a pivotal position in human nutrition. The research delves into the fundamental constituents of milk, focusing on cis-fatty acids (cis-FA), trans-fatty acids (trans-FA), and theα-helixstructure found in proteins. These constituents are instrumental in the determination of milk quality and its nutritional value.
View Article and Find Full Text PDFCurr Allergy Asthma Rep
January 2025
Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada.
Purpose Of Review: There is an increasing awareness among clinicians that industrial and household food processing methods can increase or decrease the allergenicity of foods. Modification to allergen properties through processing can enable dietary liberations. Reduced allergenicity may also allow for lower risk immunotherapy approaches.
View Article and Find Full Text PDFEcotoxicol Environ Saf
January 2025
Department of Pharmacy, Jieyang People's Hospital, Jieyang, China.
Breast milk is essential for infant health, but the transfer of xenobiotic chemicals poses significant risks. Ethical challenges in clinical trials necessitate the use of in vitro predictive models to assess chemical exposure risks in breastfeeding infants. This study introduces an explainable machine learning model to predict the risk of chemical transfer through human milk.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!