In vitro evaluation of efficacy of nonstarch polysaccharides enzymes on wheat by simulating the avian digestive tract.

J Anim Sci

Guangdong Provincial Key Laboratory of Animal Nutrition and Regulation, College of Animal Science, South China Agricultural University, Guangzhou 510000, China.

Published: January 2023

In this study, the efficacy of different nonstarch polysaccharide (NSP) enzyme sources on wheat ingredients and wheat basal diets in vitro were evaluated by simulating the avian digestive tract. In Exp. 1, pH level was increased from 2.0 to 8.0 by simulating the avian digestive tract. The relative enzyme activities of xylanase A, B, and C and β-glucanase X at pH 3.0-3.5 were higher (P < 0.05) than those at pH 2.0 or 7.0-8.0. The optimal pH levels of 3.5 and 7.0 were screened by simulating the proventriculus and small intestine, respectively to evaluate the efficacy of NSP enzyme on wheat sources. In Exp. 2, wheat 1 contained the highest content of NSP fractions and the lowest digestibility in vitro dry matter (IVDMD) and energy (IVED) in wheat samples. Therefore, wheat 1 was selected for hydrolysis research under different NSP enzyme sources and levels (1,500, 4,500, 13,500, 40,500, 121,500 U xylanase/kg and 250, 500, 1,000, 2,000, 4,000 U β-glucanase/kg) in vitro. The hydrolysis of wheat on the basis of the released reducing sugar content was determined by xylanase sources A > B > C (P < 0.05) and β-glucanase sources of X > Y (P < 0.05). On the basis of the hydrolysis, the optimum dose of xylanase A and β-glucanase X were 40,500 U/kg and 2,000 U/kg, respectively. Subsequently, the completely randomized designs involving 2 NSP enzymes treatments × 2 endogenous digestive enzymes treatments (Exp. 3), as well as 2 wheat basal diets × 2 NSP enzymes treatments (Exp. 4) were used to evaluate the efficacy of NSP enzymes on dietary nutrient digestibility. The addition of NSP enzymes (40,500 U xylanase A/kg and 2,000 U β-glucanase X/kg) increased the IVDMD and IVED of wheat 1 without endogenous enzymes (P < 0.05), while the IVDMD and IVED of wheat 1 with endogenous enzyme were only slightly increased (P > 0.05). The addition of NSP enzymes could increase the IVDMD and IVED of corn-wheat-soybean meal diet (P < 0.05), but had no effect on those of wheat-cottonseed meal rapeseed meal diet (P > 0.05). In conclusion, xylanase and β-glucanase additions could effectively eliminate the adverse effects on wheat and wheat basal diets at the optimal pH levels of 3.5 and 7.0 by simulating the proventriculus and small intestine parts, respectively. The efficacy of NSP enzymes was influenced by the enzyme sources, dietary type, and the interaction of endogenous enzymes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9831130PMC
http://dx.doi.org/10.1093/jas/skac334DOI Listing

Publication Analysis

Top Keywords

nsp enzymes
24
wheat
13
simulating avian
12
avian digestive
12
digestive tract
12
nsp enzyme
12
enzyme sources
12
wheat basal
12
basal diets
12
xylanase β-glucanase
12

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!