Objective: The human large intergenic non-coding RNA-regulator of reprogramming program () is known as a stem cell specific linc-RNA. linc-ROR counteracts differentiation via sequestering microRNA-145 (miR-145) that targets OCT4 transcript. Despite the research on the expression and function, the exact structure of transcripts is not clear. Considering the contribution of alternative splicing in transcripts structures and function, identifying different spliced variants of is necessary for further functional analyses. We aimed to find the alternatively spliced transcripts of and investigate their expression pattern in stem and cancer cell lines and during neural differentiation of NT2 cells as a model for understanding linc-ROR role in stem cell and differentiation.

Materials And Methods: In this experimental study, locus was scanned for identifying novel exons. Different primer sets were used to detect new spliced variants by reverse transcription polymerase chain reaction (RT-PCR) and direct sequencing. Quantitative PCR (qPCR) and RT-PCR were employed to profile expression of transcripts in different cell lines and during neural differentiation of stem cells.

Results: We could discover 13 novel spliced variants of linc-ROR harboring unique array of exons. Our work uncovered six novel exons, some of which were the product of exonized transposable elements. Monitoring expression profile of the spliced variants in a panel of pluripotent and non-pluripotent cells exhibited that all transcripts were primarily expressed in pluripotent cells. Moreover, the examined spliced variants showed a similar downregulation during neural differentiation of NT2 cells.

Conclusion: Altogether, our data showed despite the difference in the structure and composition of exons, various spliced variants of showed similar expression pattern in stem cells and through differentiation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9617025PMC
http://dx.doi.org/10.22074/cellj.2022.8205DOI Listing

Publication Analysis

Top Keywords

spliced variants
28
expression pattern
12
cell lines
12
neural differentiation
12
spliced
8
pluripotent non-pluripotent
8
stem cell
8
pattern stem
8
lines neural
8
differentiation nt2
8

Similar Publications

Background: TP53 variant classification benefits from the availability of large-scale functional data for missense variants generated using cDNA-based assays. However, absence of comprehensive splicing assay data for TP53 confounds the classification of the subset of predicted missense and synonymous variants that are also predicted to alter splicing. Our study aimed to generate and apply splicing assay data for a prioritised group of 59 TP53 predicted missense or synonymous variants that are also predicted to affect splicing by either SpliceAI or MaxEntScan.

View Article and Find Full Text PDF

Identification of novel CDH23 heterozygous variants causing autosomal recessive nonsyndromic hearing loss.

Genes Genomics

January 2025

Medical Genetic Diagnosis and Therapy Center of Fujian Maternity and Child Health Hospital College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fujian Provincial Key Laboratory of Prenatal Diagnosis and Birth Defect, Fuzhou, Fujian, China.

Background: Hearing loss adversely impacts language development, acquisition, and the social and cognitive maturation of affected children. The hearing loss etiology mainly includes genetic factors and environmental factors, of which the former account for about 50-60%.

Objective: This study aimed to investigate the genetic basis of autosomal recessive non-syndromic hearing loss (NSHL) by identifying and characterizing novel variants in the CDH23 gene.

View Article and Find Full Text PDF

Fine mapping of the Chilli veinal mottle virus resistance 4 (cvr4) gene in pepper (Capsicum annuum L.).

Theor Appl Genet

January 2025

Department of Agriculture, Forestry and Bioresources, Research Institute of Agriculture and Life Sciences, Plant Genomics and Breeding Institute, College of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea.

The single recessive Chilli veinal mottle virus resistance locus, cvr4, was fine-mapped in pepper through bulked segregant RNA sequencing combined with gene silencing analysis. Chilli veinal mottle virus (ChiVMV) is a widespread pathogen affecting the production of peppers (Capsicum annuum L.) in Asia and Africa.

View Article and Find Full Text PDF

Sequence-based machine-learning models trained on genomics data improve genetic variant interpretation by providing functional predictions describing their impact on the cis-regulatory code. However, current tools do not predict RNA-seq expression profiles because of modeling challenges. Here, we introduce Borzoi, a model that learns to predict cell-type-specific and tissue-specific RNA-seq coverage from DNA sequence.

View Article and Find Full Text PDF

Loss of does not affect bone and lean tissue in zebrafish.

JBMR Plus

February 2025

Department of Orthopaedic Surgery and Sports Medicine, University of Washington School of Medicine, Seattle, WA 98195, United States.

Human genetic studies have nominated cadherin-like and PC-esterase domain-containing 1 () as a candidate target gene mediating bone mineral density (BMD) and fracture risk heritability. Recent efforts to define the role of in bone in mouse and human models have revealed complex alternative splicing and inconsistent results arising from gene targeting, making its function in bone difficult to interpret. To better understand the role of in adult bone mass and morphology, we conducted a comprehensive genetic and phenotypic analysis of in zebrafish, an emerging model for bone and mineral research.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!