We previously reported that the synergistically enhanced antimicrobial activity of magainin 2 (MG2a) and PGLa is related to membrane adhesion and fusion. Here, we demonstrate that equimolar mixtures of MG2a and L18W-PGLa induce positive monolayer curvature stress and sense, at the same time, positive mean and Gaussian bilayer curvatures already at low amounts of bound peptide. The combination of both abilities-membrane curvature sensing and inducing-is most likely the base for the synergistically enhanced peptide activity. In addition, our coarse-grained simulations suggest that fusion stalks are promoted by decreasing the free-energy barrier for their formation rather than by stabilizing their shape. We also interrogated peptide partitioning as a function of lipid and peptide concentration using tryptophan fluorescence spectroscopy and peptide-induced leakage of dyes from lipid vesicles. In agreement with a previous report, we find increased membrane partitioning of L18W-PGLa in the presence of MG2a. However, this effect does not prevail to lipid concentrations higher than 1 mM, above which all peptides associate with the lipid bilayers. This implies that synergistic effects of MG2a and L18W-PGLa in previously reported experiments with lipid concentrations >1 mM are due to peptide-induced membrane remodeling and not their specific membrane partitioning.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9748257 | PMC |
http://dx.doi.org/10.1016/j.bpj.2022.10.018 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!