Cotton fiber is one of the most important natural raw materials in the world textile industry. Improving fiber yield and quality has always been the main goal. MicroRNAs, as typical small noncoding RNAs, could affect fiber length during different stages of fiber development. Based on differentially expressed microRNA in the two interspecific backcross inbred lines (BILs) with a significant difference in fiber length, we identified the miR396 gene family in the two tetraploid cotton genomes and found MIR396b_D13 as the functional precursor to produce mature miR396 during the fiber elongation stage. Among 46 target genes regulated by miR396b, the GROWTH-REGULATING FACTOR 5 gene (GRF5, Gh_A10G0492) had a differential expression level in the two BILs during fiber elongation stage. The expression patterns indicated that the miR396b-GRF5 regulatory module has a critical role in fiber development. Furthermore, virus-induced gene silencing (VIGS) of miR396b significantly produced longer fiber than the wild type, and the expression level of GRF5 showed the reverse trends of the miR396b expression level. The analysis of co-expression network for the GRF5 gene suggested that a cytochrome P450 gene functions as an allene oxide synthase (Gh_D06G0089, AOS), which plays a critical role in jasmonate biosynthetic pathway. In conclusion, our results revealed that the miR396b-GRF5 module has a critical role in fiber development. These findings provide a molecular foundation for fiber quality improvement in the future.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/ppl.13801 | DOI Listing |
Cell Biochem Biophys
December 2024
Department of Biomaterials/Osaka Dental University, 8-1, Kuzuhahanazono-cho, Osaka, 573-1121, Japan.
Elastic fibers of the internal and external elastic laminae maintain blood vessel shapes. Impairment of smooth muscle cell function leads to vascular disease development. F-box and WD-40 domain-containing protein 2 (FBXW2) is associated with elastic fibers and osteocalcin expression for bone regeneration in the periosteum.
View Article and Find Full Text PDFBiomacromolecules
December 2024
School of Chemistry, Xi'an Jiaotong University, Xi'an 710049, China.
Persistent oxidative stress following bone defects significantly impedes the repair of bone tissue. Designing an antioxidative hydrogel with a suitable mechanical strength can help alter the local microenvironment and promote bone defect healing. In this work, α-lipoic acid (LA), a natural antioxidant small molecule, was chemically cross-linked with lipoic acid-functionalized poly(ethylene glycol) (PEG, = 6k or 10k) in sodium bicarbonate solution, to prepare LA-PEG hydrogels (LP, = 6k or 10k).
View Article and Find Full Text PDFAliment Pharmacol Ther
December 2024
Adv Sci (Weinh)
December 2024
Department of Ultrasound in Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, No. 600, Yishan Road, Shanghai, 200233, P. R. China.
Rapid thrombolysis is very important to reduce complications caused by vascular blockage. A promising approach for improving thrombolysis efficiency is utilizing the permanent magnetically actuated locomotion of nanorobots. However, the thrombolytic drug transportation efficiency is challenged by in-plane rotating locomotion and the insufficient drug penetration limits further improvement of thrombolysis.
View Article and Find Full Text PDFJ Med Food
December 2024
Division of Food and Nutrition and Human Ecology Research Institute, Chonnam National University, Gwangju, Republic of Korea.
Here, we investigated whether a mixture of and (1:3, KGC01CE) could suppress muscle atrophy in HO-induced C2C12 cells and dexamethasone-injected mice. Our results revealed that KGC01CE effectively safeguarded against HO-induced muscle atrophy in C2C12 cells compared with the same mixture at other ratios. We demonstrated that dexamethasone elicited oxidative stress in muscle tissue and decreased the grip strength and cross-sectional areas of muscle fibers; however, oral administration of KGC01CE (1:3) suppressed these dexamethasone-induced changes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!