Neutron irradiation induced degradation of porous silica film is studied by Molecular Dynamics and Density-Functional theory-based methods. The degradation of microscopic structure, thermal property, and optical property of porous silica film are systematically investigated. Low-energy recoil is used to simulate the neutron irradiation effect. The pair and bond angle distributions, and coordination number distributions reveal that, under neutron irradiation, the microscopic structure of porous silica film is obviously modified, and the coordination defects are induced. We find that the higher recoil energy, the more coordination defects are formed in the film. The increased defects lead to a decrease in thermal conductivity. In addition, neutron irradiation induces additional optical absorption peaks in UV region and increasement in refractive index, resulting in a noticeable reduction in light transmittance. The detailed calculation of density of states reveals that these optical absorption peaks originate from the irradiation induced defect states in band gap. Our work shows that low-energy neutron irradiation can induce obvious defect density and degrade thermal and optical properties of porous silica film, which are responsible for subsequent laser-induced damage.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OE.462862DOI Listing

Publication Analysis

Top Keywords

neutron irradiation
24
porous silica
20
silica film
16
irradiation induced
12
microscopic structure
8
coordination defects
8
optical absorption
8
absorption peaks
8
irradiation
7
neutron
6

Similar Publications

Objectives: A combination of chemotherapy and radiotherapy is employed in the curative and postoperative treatment of locally advanced head and neck cancers (HNC). Integrated chemoradiation (CRT) treatments result in a non-negligible rate of severe toxic effects. Treatment-related death (TRD) is a crucial topic for physicians involved in the curative treatment of HNC.

View Article and Find Full Text PDF

Objective: Boron Neutron Capture Therapy (BNCT) is a novel precision radiotherapy. The key to BNCT application lies in the effective targeting and retention of the boron-10 (B) carrier. Among the various compounds studied in clinical settings, 4-boronophenylalanine (BPA) become the most prevalent one currently.

View Article and Find Full Text PDF

Fast-neutron reactors are an important representative of Generation IV nuclear reactors, and due to the unique structure and material properties of fast reactor fuel, traditional mechanical cutting methods are not applicable. In contrast, laser cutting has emerged as an ideal alternative. However, ensuring the stability of optical fibers and laser cutting heads under high radiation doses, as well as maintaining cutting quality after irradiation, remains a significant technical challenge.

View Article and Find Full Text PDF

In this work, a series of boronated amidines based on the -dodecaborate anion and amino acids containing an amino group in the side chain of the general formula [BHNHC(NH(CH)CH(NH)COOH)CH], where n = 2, 3, 4, were synthesized. These derivatives contain conserved α-amino and α-carboxyl groups recognized by the binding centers of the large neutral amino acid transporter (LAT) system, which serves as a target for the clinically applied BNCT agent para-boronophenylalanine (BPA). The paper describes several approaches to synthesizing the target compounds, their acute toxicity studies, and tumor uptake studies in vivo in two tumor models.

View Article and Find Full Text PDF

We aimed to explore the possibility of realizing a beam shaping assembly (BSA) driven by a 15-kW beam of 33-MeV electrons of an electron linear accelerator (LINAC) when a boronophenylalanine is adopted as a boron carrier. Simulation calculations were performed to design two types of BSAs driven by the small LINAC. The one was an experimental BSA, and the other was a high-performance BSA.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!