Multi-photon lithography allows us to complement planar photonic integrated circuits (PIC) by in-situ 3D-printed freeform waveguide structures. However, design and optimization of such freeform waveguides using time-domain Maxwell's equations solvers often requires comparatively large computational volumes, within which the structure of interest only occupies a small fraction, thus leading to poor computational efficiency. In this paper, we present a solver-independent transformation-optics-(TO-) based technique that allows to greatly reduce the computational effort related to modeling of 3D freeform waveguides. The concept relies on transforming freeform waveguides with curved trajectories into equivalent waveguide structures with modified material properties but geometrically straight trajectories, that can be efficiently fit into rather small cuboid-shaped computational volumes. We demonstrate the viability of the technique and benchmark its performance using a series of different freeform waveguides, achieving a reduction of the simulation time by a factor of 3-6 with a significant potential for further improvement. We also fabricate and experimentally test the simulated waveguides by 3D-printing on a silicon photonic chip, and we find good agreement between the simulated and the measured transmission at λ = 1550 nm.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OE.452243 | DOI Listing |
High-efficiency in-couplers with unpolarized responses are crucial for the performance of waveguide augmented reality displays. Freeform quasi-3D metasurfaces (FQ3DM), which integrate freeform metasurfaces with multilayer films, is one possible solution to achieve this. However, the performance of FQ3DM is limited by the lack of inverse design algorithms capable of optimizing its overall structure.
View Article and Find Full Text PDFOptical coupling between single core to multi-core optical fibers usually takes place by means of optical fiber fan-ins / fan-outs, delicate free space optics, or laser inscribed freeform waveguides. In the present work, the two-photon polymerization technique is used for the first time to create a waveguide manifold on top of a four-core optical fiber tip as a means to couple light into and from a single core optical fiber, in a fast and low-cost fashion. It is demonstrated that the performance is influenced by the numerical aperture mismatch between the fabricated and the coupled waveguides.
View Article and Find Full Text PDFA design method for ultrahigh-Q microring resonators (MRRs) based on Bezier free-form curves was proposed and demonstrated. An MRR consisting of a specially designed 180° waveguide bend, a directional coupler, and two low-loss multi-mode strip waveguides was designed. The free-form curves were used to increase the degree of freedom in the design, shaping the waveguide bend with a gradient width and curvature.
View Article and Find Full Text PDFAugmented reality head-up display (AR-HUD) using diffractive waveguide is a challenging research field. It can drastically reduce the system volume compared with AR-HUD based on freeform mirror. However, one of the remaining challenges that affects the performance of the diffractive waveguide is to expand the eye-box while maintaining the illuminance uniformity.
View Article and Find Full Text PDFJ Opt Soc Am A Opt Image Sci Vis
February 2024
Freeform dielectric waveguides connect optical chips made of different materials in fully integrated photonic devices. With a spatial extent in the order of 100 µm, they constitute a computational challenge and make Maxwell full-wave solvers unhandy for the accelerated design. Therefore, it is of utmost importance to have tools that permit the fast prediction of waveguide loss to enable the rapid optimization of waveguide trajectories.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!