We present a novel scheme for the detections of the position-vectors of the multi targets distributed in a circular space using multi channels of the probe chaotic waves emitted by the asymmetric coupling semiconductor lasers network (ACSLN), where these probe waves possess the attractive features of the time-space uncorrelation and wide bandwidth. Using these features, the accurate measurement for the position-vectors of the multi targets can be achieved by correlating the multi channels of the probe waves with their corresponding reference waves. The further research results show that the detections for the position-vectors of the multi targets possess very low relative errors that are no more than 0.22%. The ranging-resolutions for the multi targets located in a circular space can be achieved as high as 3 mm by optimizing some key parameters, such as injection current and injection strength. In addition, the ranging-resolutions exhibit excellent strong anti-noise performance even when the signal-to-noise ratio and relative noise intensity appear obvious enhancement. The detections for the position-vectors of the multi targets based on the ACSLN offers interesting perspectives for the potential applications in the driverless cars and the object tracking system with omnidirectional vision.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OE.468554DOI Listing

Publication Analysis

Top Keywords

multi targets
24
position-vectors multi
20
detections position-vectors
16
circular space
12
multi
8
targets located
8
located circular
8
asymmetric coupling
8
coupling semiconductor
8
semiconductor lasers
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!