We establish a method for estimating conversion gains of image sensors on the basis of a maximum likelihood estimation, one of the most common and well-established statistical approaches. A numerical simulation indicates the proposed method can evaluate the conversion gain more accurately with less data accumulation than known approaches. We also applied this method to experimental images accumulated under a photon-counting-regime illumination condition by a CMOS image sensor that can distinguish how many photoelectrons are generated in each pixel. Resultantly, the conversion gains were determined with an accuracy of three digits from 1000 observed images, whose number is at most 10 times smaller than that required for achieving a similar accuracy by known gain-estimation methods.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OE.471394 | DOI Listing |
Cardiovasc Eng Technol
January 2025
Institute for Medical Engineering and Science, Massachusetts Institute of Technology, MA, Cambridge, USA.
Purpose: Atrial fibrillation (AF) is the most common chronic cardiac arrhythmia that increases the risk of stroke, primarily due to thrombus formation in the left atrial appendage (LAA). Left atrial appendage occlusion (LAAO) devices offer an alternative to oral anticoagulation for stroke prevention. However, the complex and variable anatomy of the LAA presents significant challenges to device design and deployment.
View Article and Find Full Text PDFAnal Chem
January 2025
Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
Ligand binding to membrane proteins initiates numerous therapeutic processes. Surface plasmon resonance (SPR), a popular method for analyzing molecular interactions, has emerged as a promising tool for in situ determination of membrane protein binding kinetics owing to its label-free detection, high surface sensitivity, and resistance to intracellular interference. However, the excitation of SPR relies on noble metal films, typically gold, which are biologically incompatible and can cause fluorescence quenching.
View Article and Find Full Text PDFBlood
January 2025
New York Blood Center, New York, New York, United States.
Babesiosis in sickle cell disease (SCD) is marked by severe anemia but the underlying red blood cell (RBC) rheological parameters remain largely undefined. Here, we describe altered RBC deformability from both primary (host RBC sickle hemoglobin mediated) and secondary changes (Babesia parasite infection mediated) to the RBC membrane using wild type AA, sickle trait AS and sickle SS RBCs. Our ektacytometry (LORRCA) analysis demonstrates that the changes in the host RBC bio-mechanical properties, pre- and post- Babesia infection, reside on a spectrum of severity, with wild type infected AA cells, despite showing a significant reduction of deformability under both shear and osmolarity gradients, exhibiting only a mild phenotype; compared to infected AS RBCs which show median changes in deformability and infected SS RBCs which exhibit the most dramatic impact of infection on cellular rheology, including an increase in Point of Sickling values.
View Article and Find Full Text PDFMagn Reson Med
January 2025
Department 8.1 - Biomedical Magnetic Resonance, Physikalisch-Technische Bundesanstalt (PTB), Braunschweig and Berlin, Germany.
Purpose: To develop a low-cost, high-performance, versatile, open-source console for low-field MRI applications that can integrate a multitude of different auxiliary sensors.
Methods: A new MR console was realized with four transmission and eight reception channels. The interface cards for signal transmission and reception are installed in PCI Express slots, allowing console integration in a commercial PC rack.
ACS Appl Mater Interfaces
January 2025
Interdisciplinary Nanoscience Center, Aarhus University, Gustav Wieds Vej 14, 8000 Aarhus C, Denmark.
High-throughput measurement of cellular traction forces at the nanoscale remains a significant challenge in mechanobiology, limiting our understanding of how cells interact with their microenvironment. Here, we present a novel technique for fabricating protein nanopatterns in standard multiwell microplate formats (96/384-wells), enabling the high-throughput quantification of cellular forces using DNA tension gauge tethers (TGTs) amplified by CRISPR-Cas12a. Our method employs sparse colloidal lithography to create nanopatterned surfaces with feature sizes ranging from sub 100 to 800 nm on transparent, planar, and fully PEGylated substrates.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!