Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The mortality of coronavirus disease 2019 (COVID-19) disease is very high among the elderly or individuals having comorbidities such as obesity, cardiovascular diseases, lung infections, hypertension, and/or diabetes. Our study characterizes the metagenomic features in severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2)-infected patients with or without type 2 diabetes, to identify the microbial interactions associated with its fatal consequences.This study compared the baseline nasopharyngeal microbiome of SARS-CoV-2-infected diabetic and nondiabetic patients with controls adjusted for age and gender. The metagenomics based on next-generation sequencing was performed using Ion GeneStudio S5 Series and the data were analyzed by the Vegan-package in R. All three groups possessed significant bacterial diversity and dissimilarity indexes (p < 0.05). Spearman's correlation coefficient network analysis illustrated 183 significant positive correlations and 13 negative correlations of pathogenic bacteria (r = 0.6-1.0, p < 0.05), and 109 positive correlations between normal flora and probiotic bacteria (r > 0.6, p < 0.05). The SARS-CoV-2 diabetic group exhibited a significant increase in pathogens and secondary infection-causing bacteria (p < 0.05) with a simultaneous decrease of normal flora (p < 0.05). The dysbiosis of the bacterial community might be linked with severe consequences of COVID-19-infected diabetic patients, although a few probiotic strains inhibited numerous pathogens in the same pathological niches. This study suggested that the promotion of normal flora and probiotics through dietary supplementation and excessive inflammation reduction by preventing secondary infections might lead to a better outcome for those comorbid patients.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9874868 | PMC |
http://dx.doi.org/10.1002/jmv.28234 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!