The aim of this study was to investigate the characteristics of a novel type C lectin from Trichinella spiralis (TsCTL) and its role in larval invasion of intestinal epithelial cells (IECs). TsCTL has a carbohydrate recognition domain (CRD) of C-type lectin. The full-length TsCTL cDNA sequence was cloned and expressed in Escherichia coli BL21. The results of qPCR, Western blotting and immunofluorescence assays (IFAs) showed that TsCTL was a surface and secretory protein that was highly expressed at the T. spiralis intestinal infective larva (IIL) stages and primarily located at the cuticle, stichosome and embryos of the parasite. rTsCTL could specifically bind with IECs, and the binding site was localized in the IEC nucleus and cytoplasm. The IFA results showed that natural TsCTL was secreted and bound to the enteral epithelium at the intestinal stage of T. spiralis infection. The rTsCTL had a haemagglutinating effect on murine erythrocytes, while mannose was able to inhibit the rTsCTL agglutinating effect for mouse erythrocytes. rTsCTL accelerated larval intrusion into the IECs, whereas anti-rTsCTL antibodies and mannose significantly impeded larval intrusion in a dose-dependent manner. The results indicated that TsCTL specifically binds to IECs and promotes larval invasion of intestinal epithelium, and it might be a potential target of vaccines against T. spiralis enteral stages.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9580147PMC
http://dx.doi.org/10.1186/s13567-022-01104-2DOI Listing

Publication Analysis

Top Keywords

larval invasion
12
c-type lectin
8
lectin trichinella
8
trichinella spiralis
8
intestinal epithelial
8
epithelial cells
8
invasion intestinal
8
larval intrusion
8
tsctl
6
spiralis
5

Similar Publications

The parasitoid Exorista sorbillans exploits host silkworm encapsulation to build respiratory funnel for survival.

Insect Biochem Mol Biol

December 2024

School of Life Sciences, Suzhou Medical College of Soochow University, Suzhou, Jiangsu, 215123, China; Sericulture Institute of Soochow University, Suzhou, Jiangsu, 215123, China. Electronic address:

Insect parasitoids have evolved sophisticated strategies to evade or modulate host immunity for parasitic infections. The precise mechanisms by which parasitoids counteract host anti-parasitic responses are poorly defined. Here we report a novel immune evasion strategy employed by the parasitoid Exorista sorbillans (Diptera: Tachinidae) to establish infection.

View Article and Find Full Text PDF

The carpophilus beetle, Carpophilus truncatus Murray, 1864 (Coleoptera: Nitidulidae) is an invasive pest recently detected in California's tree nut crop orchards. Here we report a simple, labor-saving, and cost-effective rearing system for C. truncatus utilizing banana and industrial sand components.

View Article and Find Full Text PDF

Aedes albopictus (Skuse) and Aedes aegypti L. (Diptera: Culicidae) are invasive species known for their notable expansion capacity, which makes them relevant in the context of public health due to their role as vectors. In Argentina, these species coexist in a limited subtropical area in Northeastern part of the country.

View Article and Find Full Text PDF

Transcriptomic resources for Bagrada hilaris (Burmeister), a widespread invasive pest of Brassicales.

PLoS One

December 2024

Invasive Insect Biocontrol and Behavior Laboratory, USDA-ARS, Beltsville, Maryland, United States of America.

The bagrada bug, Bagrada hilaris (Burmeister), is an emerging agricultural pest in the Americas, threatening agricultural production in the southwestern United States, Mexico and Chile, as well as in the Old World (including Africa, South Asia and, more recently, Mediterranean areas of Europe). Substantive transcriptomic sequence resources for this damaging species would be beneficial towards understanding its capacity for developing insecticide resistance, identifying viruses that may be present throughout its population and identifying genes differentially expressed across life stages that could be exploited for biomolecular pesticide formulations. This study establishes B.

View Article and Find Full Text PDF

Larval competition between the invasive Aedes aegypti (Diptera: Culicidae) and the Caribbean endemic Aedes mediovittatus (Diptera: Culicidae) from Puerto Rico, USA.

J Med Entomol

December 2024

Entomology and Nematology Department, Florida Medical Entomology Laboratory, Institute of Food and Agricultural Sciences, University of Florida, Vero Beach, FL, 32962, USA.

Competition between mosquito species during the larval phase is a well-established mechanism structuring container mosquito communities, with invasive species often outperforming natives. We assessed the competitive outcome between 2 species that occur on the island of Puerto Rico, the historic invasive Aedes aegypti (L.) and the endemic Aedes mediovittatus (Coquillett) (Diptera: Culicidae).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!