A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Individualizing mechanical ventilation: titration of driving pressure to pulmonary elastance through Young's modulus in an acute respiratory distress syndrome animal model. | LitMetric

Background: Mechanical ventilation increases the risk of lung injury (VILI). Some authors propose that the way to reduce VILI is to find the threshold of driving pressure below which VILI is minimized. In this study, we propose a method to titrate the driving pressure to pulmonary elastance in an acute respiratory distress syndrome model using Young's modulus and its consequences on ventilatory-induced lung injury.

Material And Methods: 20 Wistar Han male rats were used. After generating an acute respiratory distress syndrome, two groups were studied: (a) standard protective mechanical ventilation: 10 rats received 150 min of mechanical ventilation with driving pressure = 14 cm HO, tidal volume < 6 mL/kg) and (b) individualized mechanical ventilation: 10 rats received 150 min of mechanical ventilation with an individualized driving pressure according to their Young's modulus. In both groups, an individualized PEEP was programmed in the same manner. We analyzed the concentration of IL-6, TNF-α, and IL-1ß in BAL and the acute lung injury score in lung tissue postmortem.

Results: Global driving pressure was different between the groups (14 vs 11 cm H2O, p = 0.03). The individualized mechanical ventilation group had lower concentrations in bronchoalveolar lavage of IL-6 (270 pg/mL vs 155 pg/mL, p = 0.02), TNF-α (292 pg/mL vs 139 pg/mL, p < 0.01) and IL-1ß (563 pg/mL vs 131 pg/mL, p = 0.05). They presented lower proportion of lymphocytes (96% vs 79%, p = 0.05) as well as lower lung injury score (6.0 points vs 2.0 points, p = 0.02).

Conclusion: In our model, individualization of DP to pulmonary elastance through Young's modulus decreases lung inflammation and structural lung injury without a significant impact on oxygenation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9578179PMC
http://dx.doi.org/10.1186/s13054-022-04184-wDOI Listing

Publication Analysis

Top Keywords

mechanical ventilation
16
driving pressure
12
acute respiratory
12
respiratory distress
12
distress syndrome
12
pressure pulmonary
8
pulmonary elastance
8
young's modulus
8
individualizing mechanical
4
ventilation
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!