A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Classification of body postures using smart workwear. | LitMetric

Classification of body postures using smart workwear.

BMC Musculoskelet Disord

Department of Health Services Research, Carl von Ossietzky University Oldenburg, Oldenburg, Germany.

Published: October 2022

Background: Despite advancing automation, employees in many industrial and service occupations still have to perform physically intensive work that may have negative effects on the health of the musculoskeletal system. For targeted preventive measures, precise knowledge of the work postures and movements performed is necessary.

Methods: Prototype smart work clothes equipped with 15 inertial sensors were used to record reference body postures of 20 subjects. These reference postures were used to create a software-based posture classifier according to the Ovako Working Posture Analysing System (OWAS) by means of an evolutionary training algorithm.

Results: A total of 111,275 posture shots were recorded and used for training the classifier. The results show that smart workwear, with the help of evolutionary trained software classifiers, is in principle capable of detecting harmful postures of its wearer. The detection rate of the evolutionary trained classifier ([Formula: see text] for the postures of the back, [Formula: see text] for the arms, and [Formula: see text] for the legs) outperforms that of a TensorFlow trained classifying neural network.

Conclusions: In principle, smart workwear - as prototypically shown in this paper - can be a helpful tool for assessing an individual's risk for work-related musculoskeletal disorders. Numerous potential sources of error have been identified that can affect the detection accuracy of software classifiers required for this purpose.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9580122PMC
http://dx.doi.org/10.1186/s12891-022-05821-9DOI Listing

Publication Analysis

Top Keywords

smart workwear
12
[formula text]
12
body postures
8
evolutionary trained
8
software classifiers
8
postures
6
classification body
4
smart
4
postures smart
4
workwear background
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!