Background: Paclitaxel (PTX), a first-line therapy for triple negative breast cancers (TNBC) induces anti-tumor activity by microtubule stabilization and inhibition of cell division. Its dose-limiting toxicity and short half-life, however, pose clinical challenges underscoring the need for strategies that increase its efficiency. RAD6, a E2 ubiquitin conjugating enzyme, is associated with centrosomes at all phases of cell cycle. Constitutive overexpression of the RAD6B homolog in normal breast cells induces centrosome amplification and multipolar spindle formation, indicating its importance in centrosome regulation.

Methods: TNBC centrosome numbers were scored by pericentrin immunostaining. PTX sensitivities and interactions with SMI#9, a RAD6-selective small molecule inhibitor, on TNBC cell survival were analyzed by MTT and colony forming assays and an isogenic MDA-MB-468 TNBC model of PTX resistance. The molecular mechanisms underlying PTX and SMI#9 induced cytotoxicity were determined by flow cytometry, immunoblot analysis of cyclin B1 and microtubule associated protein TAU, and dual immunofluorescence staining of TAU and α-tubulin.

Results: Our data show aberrant centrosome numbers and that PTX sensitivities are not correlated with TNBC BRCA1 status. Combining PTX with SMI#9 synergistically enhances PTX sensitivities of BRCA1 wild-type and mutant TNBC cells. Whereas SMI#9/PTX combination treatment increased cyclin B1 levels in MDA-MB-468 cells, it induced cyclin B1 loss in HCC1937 cells with accumulation of reproductively dead giant cells, a characteristic of mitotic catastrophe. Cell cycle analysis revealed drug-induced accumulation of tetraploid cells in S and G2/M phases, and robust increases in cells with 4 N DNA content in HCC1937 cells. TAU overexpression is associated with reduced PTX efficacy. Among the six TAU isoforms, both SMI#9 and PTX downregulated 1N3R TAU in MDA-MB-468 and HCC1937 cells, suggesting a common mechanism of 1N3R regulation. Dual TAU and α-tubulin immunostaining showed that SMI#9 induces monopolar mitotic spindles. Using the isogenic model of PTX resistance, we show that SMI#9 treatment restores PTX sensitivity.

Conclusions: These data support a common mechanism of microtubule regulation by SMI#9 and PTX and suggest that combining PTX with RAD6 inhibitor may be beneficial for increasing TNBC sensitivities to PTX and alleviating toxicity. This study demonstrates a new role for RAD6 in regulating microtubule dynamics.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9578210PMC
http://dx.doi.org/10.1186/s12885-022-10119-zDOI Listing

Publication Analysis

Top Keywords

ptx
14
ptx sensitivities
12
hcc1937 cells
12
cells
10
triple negative
8
negative breast
8
cell cycle
8
centrosome numbers
8
model ptx
8
ptx resistance
8

Similar Publications

Advanced cancer patients face a high risk of sepsis due to immune suppression and infection susceptibility. To tackle this challenge, we developed an innovative animal model that simulates the clinical scenario of late-stage cancer complicated by sepsis and designed a sialic acid (SA)-modified paclitaxel (PTX) liposome (PTX-SAL). This formulation specifically targets overactivated peripheral blood neutrophils (PBNs) by binding to L-selectin on their surface.

View Article and Find Full Text PDF

: Paclitaxel (PTX), a commonly used chemotherapy for breast cancer (BC), is associated with dose-limiting toxicities (DLTs) such as peripheral neuropathy and neutropenia. These toxicities frequently lead to dose reductions, treatment delays, or therapy discontinuation, negatively affecting patients' quality of life and clinical outcomes. Current dosing strategies based on body surface area (BSA) fail to account for individual variations in body composition (skeletal muscle mass (SMM) and adipose tissue (AT) mass) and physical activity (PA), which can influence drug metabolism and toxicity.

View Article and Find Full Text PDF

Abscisic Acid, Microtubules and Phospholipase D-Solving a Cellular Bermuda Triangle.

Int J Mol Sci

December 2024

Molecular Cell Biology, Joseph Gottlieb Kölreuter Institute for Plant Sciences, Karlsruhe Institute of Technology, Fritz-Haber-Weg 4, 76131 Karlsruhe, Germany.

Rice plants are important food crops that are sensitive to cold stress. Microtubules (MTs) are highly associated with plant response to cold stress. The exogenous application of abscisic acid (ABA) can transiently induce the cold stability of microtubules.

View Article and Find Full Text PDF

Chemotherapy resistance in triple-negative breast cancer (TNBC) leads to poor therapeutic effects and a poor prognosis. Given that paclitaxel-based chemotherapy is the main treatment method for TNBC, enhancing its chemosensitivity has been a research focus. Induced ferroptosis of tumour cells has been proven to increase chemosensitivity, but its ability to sensitize TNBC cells to paclitaxel (PTX) is unknown.

View Article and Find Full Text PDF

Ovarian cancer (OC) is a significant cause of cancer-related mortality among women. This study explores the efficacy of L. () extract, known for its phytoestrogenic properties, in treating OC through hormonal and metabolic modulation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!