Pseudomonas aeruginosa in the Cystic Fibrosis Lung.

Adv Exp Med Biol

Department of Paediatric Respiratory Medicine, Royal Brompton Hospital, part of Guy's & St Thomas' NHS Trust, London, UK.

Published: October 2022

Cystic fibrosis is a common genetically inherited, multisystem disorder caused by loss of function of the cystic fibrosis transmembrane conductance regulator (CFTR) protein, an apically situated anion channel. In the lung, lack of CFTR leads to airway surface dehydration, mucociliary clearance failure and an acidic pH in which innate defence molecules are rendered ineffective. Infection occurs early in life, with P. aeruginosa dominating by adolescence. The characteristic features of the CF airway highlighted above encourage persistence of infection, but P. aeruginosa also possess an array of mechanisms with which they attack host defences and render themselves protected from antimicrobials. Early eradication is usually successful, but this is usually transient. Chronic infection is manifest by biofilm formation which is resistant to treatment. Outcomes for people with CF have improved greatly in the last few decades, but particularly so with the recent advent of small molecule CFTR modulators. However, despite impressive efficacy on lung function and exacerbation frequency, most people with chronic infection remain with their pathogens. There is an active pipeline of new treatments including anti-biofilm and anti-quorum sensing molecules and non-drug approaches such as bacteriophage. Studies are reviewed and challenges for future drug development considered.

Download full-text PDF

Source
http://dx.doi.org/10.1007/978-3-031-08491-1_13DOI Listing

Publication Analysis

Top Keywords

cystic fibrosis
12
chronic infection
8
pseudomonas aeruginosa
4
aeruginosa cystic
4
fibrosis lung
4
lung cystic
4
fibrosis common
4
common genetically
4
genetically inherited
4
inherited multisystem
4

Similar Publications

Impact of SARS-CoV-2 spike antibody positivity on infection and hospitalisation rates in immunosuppressed populations during the omicron period: the MELODY study.

Lancet

January 2025

Centre for Inflammatory Disease, Department of Immunology and Inflammation, Imperial College London, London, UK; Imperial College Renal and Transplant Centre, Imperial College Healthcare NHS Trust, Hammersmith Hospital, London, UK. Electronic address:

Background: In the UK, booster COVID-19 vaccinations have been recommended biannually to people considered immune vulnerable. We investigated, at a population level, whether the absence of detectable anti-SARS-CoV-2 spike protein IgG antibody (anti-S Ab) following three or more vaccinations in immunosuppressed individuals was associated with greater risks of infection and severity of infection.

Methods: In this prospective cohort study using UK national disease registers, we recruited participants with solid organ transplants (SOTs), rare autoimmune rheumatic diseases (RAIRDs), and lymphoid malignancies.

View Article and Find Full Text PDF

Recombinant Antibodies Inhibit Enzymatic Activity of the E3 Ubiquitin Ligase CHIP via Multiple Mechanisms.

J Biol Chem

January 2025

Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA. Electronic address:

Carboxyl-terminus of Hsp70-Interacting Protein (CHIP) is an E3 ubiquitin ligase that marks misfolded substrates for degradation. Hyper-activation of CHIP has been implicated in multiple diseases, including cystic fibrosis and cancer, suggesting that it may be a potential drug target. However, there are few tools available for exploring this possibility.

View Article and Find Full Text PDF

Tobramycin nanoformulation for chronic pulmonary infections: From drug product definition to scale-up for preclinical evaluation.

Int J Pharm

January 2025

CIDETEC, Basque Research and Technology Alliance (BRTA), Parque Científico y Tecnológico de Gipuzkoa, Donostia-San Sebastián, Spain; Kusudama Therapeutics SA, Parque Científico y Tecnológico de Gipuzkoa, Donostia-San Sebastián, Spain; Biogipuzkoa Health Research Institute, Group of Innovation, 20014 San Sebastian, Spain.

Cystic fibrosis (CF) is characterized by abnormal mucus hydration due to a defective CF Transmembrane Regulator (CFTR) protein, leading to the production of difficult-to-clear mucus. This causes airflow obstruction, recurrent infections, and respiratory complications. Chronic lung infections are the leading cause of death for CF patients and inhaled tobramycin is the first-in-line antibiotic treatment against these infections, mainly caused by Pseudomonas aeruginosa in adult patients.

View Article and Find Full Text PDF

This paper presents a comprehensive review of the current literature, clinical trials, and products approved for the delivery of antibiotics to the lungs. While there are many literature reports describing potential delivery systems, few of these have translated into marketed products. Key challenges remaining are the high doses required and, for powder formulations, the ability of the inhaler and powder combination to deliver the dose to the correct portion of the respiratory tract for maximum effect.

View Article and Find Full Text PDF

VX-770, C-A1, and Increased Intracellular cAMP Have Distinct Acute Impacts upon CFTR Activity.

Int J Mol Sci

January 2025

Department of Pediatrics, National Jewish Health, Denver, CO 80206, USA.

The cystic fibrosis transmembrane conductance regulator (CFTR) is an anion channel that is dysfunctional in individuals with cystic fibrosis (CF). The permeability of CFTR can be experimentally manipulated though different mechanisms, including activation via inducing the phosphorylation of residues in the regulatory domain as well as altering the gating/open probability of the channel. Phosphorylation/activation of the channel is achieved by exposure to compounds that increase intracellular cAMP, with forskolin and IBMX commonly used for this purpose.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!