Pseudomonas aeruginosa causes a wide array of life-threatening acute and chronic infections in humans. This opportunistic pathogen is metabolically highly versatile and harbors multiple virulence factors that allow infection of essentially any organ of the human body. The high capacity of this bacterium to acquire iron facilitates its versatility and is considered one of the P. aeruginosa virulence hallmarks. Iron functions as a redox cofactor of enzymes required for vital biological processes and is thus essential for all living organisms. However, in aerobic environments, iron is mainly present in its ferric form, which is insoluble and poorly bioavailable. This problem increases in the human body because, as a reaction to the infection, the host induces a "nutritional immunity" response aiming to reduce the amount of iron available for invading microorganisms. P. aeruginosa contains several mechanisms for iron acquisition including (1) production of siderophores pyoverdine and pyochelin; (2) use of xenosiderophores produced by other microorganisms; (3) direct transport of ferrous ions; and (4) utilization of host iron carriers (e.g., heme). However, although essential, iron results toxic when present in excess because it facilitates the production of reactive oxygen species (ROS) that damage bacterial cells. P. aeruginosa contains ferritins and efflux systems for iron withdrawal to avoid excess of this metal. Production of iron acquisition and removal systems is highly regulated to ensure sufficient iron for metabolic needs while preventing its toxicity. This chapter covers the different mechanisms used by P. aeruginosa to maintain iron homeostasis, which is vital for this pathogen to grow and proliferate in the host. We also highlight current strategies to block P. aeruginosa infections by disrupting iron homeostasis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/978-3-031-08491-1_2 | DOI Listing |
Biochemistry
January 2025
School of Chemistry and Biochemistry, Georgia Institute of Technology, 950 Atlantic Drive, Atlanta, Georgia 30332, United States.
Coral reefs are hotspots of marine biodiversity, which results in the synthesis of a wide variety of compounds with unique molecular scaffolds, and bioactivities, rendering reefs an ecosystem of interest. The chemodiversity stems from the intricate relationships between inhabitants of the reef, as the chemistry produced partakes in intra- and interspecies communication, settlement, nutrient acquisition, and defense. However, the coral reefs are declining at an unprecedented rate due to climate change, pollution, and increased incidence of pathogenic diseases.
View Article and Find Full Text PDFInt J Cardiol Heart Vasc
February 2025
Department of Geriatrics, Peking University Third Hospital, Beijing 100191, PR China.
Background: Ferroptosis is a cell death process that depends on iron and reactive oxygen species. It significantly contributes to cardiovascular diseases. However, its exact role in ischemic cardiomyopathy (ICM) is still unclear.
View Article and Find Full Text PDFJ Tradit Complement Med
January 2025
School of Chemical & Biotechnology, SASTRA Deemed University, Thanjavur, India.
Background & Aim: Hemolytic anemia is a blood disorder whose incidence is increasing in the world in recent years especially after the pandemic. Conventional treatments include use of steroids and immunosuppresants that are accompanied by numerous adverse effects. With growing interest in using complex multi-component formulations for multi-targeted therapy, the present study aims to investigate the therapeutic efficacy of a traditional herbomineral preparation, , which has been traditionally used as a supplement in iron-deficiency anemia, against phenylhydrazine-induced hemolytic anemia in rodent models.
View Article and Find Full Text PDFFront Nutr
December 2024
United States Agency for International Development, Kathmandu, Nepal.
Introduction: Monitoring and evaluation of maternal and child nutrition programs typically concentrates on overall population-level results. There is limited understanding, however, of how intervention reach and expected outcomes differ among sub-populations, necessary insight for addressing inequalities. These analyses aim to determine if maternal exposure to social and behavior change (SBC) interventions is associated with scales of maternal practices (antenatal care, iron and folic acid in pregnancy, diet in pregnancy, postnatal care, iron and folic acid postpartum, and maternal dietary diversity) and child practices (institutional birth, health mothers' group participation, growth monitoring and promotion, early initiation of breastfeeding and infant and young child feeding) in Nepal, overall and by wealth, caste, and geography.
View Article and Find Full Text PDFRSC Adv
January 2025
Gansu Zhongshang Food Quality Test and Detection Co., Ltd Lanzhou 730010 China.
Ferrihydrite (Fh), a widely distributed mineral in the environment, plays a crucial role in the geochemical cycling of elements. This study used experimental and computational approaches to investigate the adsorption behavior of seven heavy metal ions on Fh. The pH edge analysis revealed that the adsorption capacity followed the order: Pb > Cu > Zn > Cd > Ni > Co > Mn, with Pb showed the highest adsorption.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!