The objectives of our proposed study were as follows: First objective is to segment the CT images using a k-means clustering algorithm for extracting the region of interest and to extract textural features using gray level co-occurrence matrix (GLCM). Second objective is to implement machine learning classifiers such as Naïve bayes, bagging and Reptree to classify the images into two image classes namely COVID and non-COVID and to compare the performance of the three pre-trained CNN models such as AlexNet, ResNet50 and SqueezeNet with that of the proposed machine learning classifiers. Our dataset consists of 100 COVID and non-COVID images which are pre-processed and segmented with our proposed algorithm. Following the feature extraction process, three machine learning classifiers (Naive Bayes, Bagging, and REPTree) were used to classify the normal and covid patients. We had implemented the three pre-trained CNN models such as AlexNet, ResNet50 and SqueezeNet for comparing their performance with machine learning classifiers. In machine learning, the Naive Bayes classifier achieved the highest accuracy of 97%, whereas the ResNet50 CNN model attained the highest accuracy of 99%. Hence the deep learning networks outperformed well compared to the machine learning techniques in the classification of Covid-19 images.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9579174 | PMC |
http://dx.doi.org/10.1038/s41598-022-20804-5 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!