Different chemical forms of sex hormones including free/conjugated metabolites as well as their protein/DNA adducts in human serum are a panel of important indicators of health conditions. It is, however, hard to quantify all species simultaneously due to the lack of general extraction, derivatization, and de-conjugation methods. Here we developed a label-free and de-conjugation-free workflow to quantify 11 free/conjugated estrogen metabolites including depurinating DNA and protein adduct forms of 4-hydroxyestradiol (4OHE2) in human serum. Acetonitrile acts as an excellent solvent to purify adducted and non-adducted human serum albumin (HSA) by precipitation as well as to extract free/conjugated metabolites and depurinating DNA adducts from the supernatant by salting-out effect. The adduction level of 4OHE2 on HSA was determined by proteomics; free/conjugated metabolites were quantified by a newly developed microflow liquid chromatography (microflow LC)-nanoelectrospray ionization (nanoESI)-multiple reaction monitoring (MRM) method with high reproducibility (7-22% RSD, n > 3) and sub-picogram levels (0.6-20 pg/mL) of quantification limits (S/N = 8) by using non-pulled capillary as nano-ESI emitter. This workflow was demonstrated to reveal endogenous adduction level of 4OHE2 on HSA as well as circulation levels of free/conjugated metabolites in clinical samples. 4OHE2 in human serum were solely detected as protein-bound form, indicating the merit of such integrated platform covering unstable or active metabolites. Compared to traditional methods using labeling or de-conjugation reaction, this workflow is much simplier, more sensitive, and more specific. Moreover, it can be widely applied in omics to concurrently access various bio-transformed known and un-known markers or drugs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.aca.2022.340457 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!