Brain Metabolic Profile in Presymptomatic Carriers Throughout a 5-Year Follow-up.

Neurology

From the Sorbonne Université (D.S., L.S., M.H., A.F., D.R., M.L., R.M., I.L.B.), Paris Brain Institute-Institut du Cerveau-ICM, Inserm U1127, CNRS UMR 7225, Paris, France; IM2A (D.S., M.H., A.F., D.R., C.A., R.M., I.L.B.), Reference Centre for Rare or Early-Onset Dementias, Département de Neurologie, AP-HP - Hôpital Pitié-Salpêtrière, Paris, France; Aramis Project Team (D.S.), Inria Research Center of Paris, France; Sorbonne Université (H.B., M.P.-I., M.L., A.K., M.-O.H.), CNRS, INSERM, Laboratoire d'Imagerie Biomédicale, LIB, Paris, France; Centre d'Acquisition et de Traitement d'Images (CATI) (H.B., M.L., A.K., M.-O.H.), US52-UAR2031, CEA, ICM, SU, CNRS, INSERM, APHP, Ile de France, France; Université Paris-Saclay (H.B.), CEA, CNRS, Neurospin, UMR9027 Baobab, Gif-sur-Yvette, France; Centre of Excellence of Neurodegenerative Disease (CoEN) (M.H.), AP-HP - Hôpital Pitié-Salpêtrière, Paris, France; Département de Médecine Nucléaire (V.C.-L., A.K., M.-O.H.), AP-HP - Hôpital Pitié-Salpêtrière, Paris, France; Nuclear Medicine Department (A.J.), CHU Lille, Lille, France; Univ Lille (F.P.), Inserm U1172, CHU Lille, DistAlz, LiCEND, CNR-MAJ, France; Department of Nuclear Medicine (M.C.), Centre Henri Becquerel, Rouen University Hospital, France; Normandie Univ (D.W.), UNIROUEN, Inserm U1245 and CHU Rouen, Department of Neurology, CNR-MAJ, Normandy Center for Genomic and Personalized Medicine, CIC-CRB1404, Rouen, France; Nuclear Medicine Department (A.H.), Toulouse Purpan University Hospital, France; Department of Neurology and ToNIC (J.P.), Toulouse NeuroImaging Centre, Inserm, UPS, Toulouse University Hospital, France; Nuclear Medicine Department (A.P.), University Hospital of Nantes, France; CHU Nantes (C.B.-B.), Inserm CIC04, Department of Neurology, Centre Mémoire de Ressources et Recherche, Nantes, France; Nuclear Medicine Department (E.G.), Aix-Marseille University, APHM, CNRS, Centrale Marseille, Institut Fresnel, Timone Hospital, CERIMED, France; APHM (M.D.), Timone, Service de Neurologie et Neuropsychologie, APHM-Hôpital Timone Adultes, Marseille, France; and Aix-Marseille Univ (M.D.), INSERM, INS Institut de Neurosciences des Systèmes, France.

Published: January 2023

Background And Objectives: variants are a frequent cause of familial frontotemporal dementia (FTD). Monitoring disease progression in asymptomatic carriers of genetic variants is a major challenge in delivering preventative therapies before clinical onset. This study aimed to assess the usefulness of fluorodeoxyglucose (FDG)-PET in identifying metabolic changes in presymptomatic carriers (PS-+) and to trace their longitudinal progression.

Methods: Participants were longitudinally evaluated over 5 years in a prospective cohort study focused on disease (Predict-PGRN). They underwent cognitive/behavioral assessment, plasma neurofilament measurement, brain MRI, and FDG-PET. Voxel-wise comparisons of structural and metabolic imaging data between 2 groups were performed for each time point. Longitudinal PET changes were evaluated with voxel-wise comparisons and the metabolic percent annual changes method. The association of regional brain metabolism with plasma neurofilament and cognitive changes was analyzed.

Results: Among the 80 individuals enrolled in the study, 58 (27 PS-+ and 31 noncarriers) were included in the analyses. Cross-sectional comparisons between PS-+ and controls found a significant hypometabolism in the left superior temporal sulcus (STS) region (encompassing the middle and superior temporal gyri), approximately 15 years before the expected disease onset, without significant cortical atrophy. The longitudinal metabolic decline over the following 5 years peaked around the right STS in carriers ( < 0.001), without significantly greater volume loss compared with that in controls. Their estimated annualized metabolic decrease (-1.37%) was higher than that in controls (-0.21%, = 0.004). Lower glucose uptake was associated with higher neurofilament increase ( = 0.003) and lower frontal cognitive scores ( = 0.014) in PS-+.

Discussion: This study detected brain metabolic changes in the STS region, preceding structural and cognitive alterations, thus contributing to the characterization of the pathochronology of preclinical disease. Owing to the STS involvement in the perception of facially communicated cues, it is likely that its dysfunction contributes to social cognition deficits characterizing FTD. Overall, our study highlights brain metabolic changes as an early disease-tracking biomarker and proposes annualized percent decrease as a metric to monitor therapeutic response in forthcoming trials.

Download full-text PDF

Source
http://dx.doi.org/10.1212/WNL.0000000000201439DOI Listing

Publication Analysis

Top Keywords

brain metabolic
12
metabolic changes
12
presymptomatic carriers
8
plasma neurofilament
8
voxel-wise comparisons
8
superior temporal
8
sts region
8
metabolic
7
changes
6
brain
5

Similar Publications

The purpose of this review was to analyse the literature regarding the correlation between the level of tryptamine, aryl hydrocarbon receptor (AHR) signalling pathway activation, and monoamine oxidase (MAO)-A and MAO-B activity in health and conditions such as neurodegenerative, neurodevelopmental, and psychiatric disorders. Tryptamine is generated through the decarboxylation of tryptophan by aromatic amino acid decarboxylase (AADC) in the central nervous system (CNS), peripheral nervous system (PNS), endocrine system, and gut bacteria. Organ-specific metabolism of tryptamine, which is mediated by different MAO isoforms, causes this trace amine to have different pharmacokinetics between the brain and periphery.

View Article and Find Full Text PDF

Appetite, as the internal drive for food intake, is often dysregulated in a broad spectrum of conditions associated with over- and under-nutrition across the lifespan. Appetite regulation is a complex, integrative process comprising psychological and behavioral events, peripheral and metabolic inputs, and central neurotransmitter and metabolic interactions. The microbiota-gut-brain axis has emerged as a critical mediator of multiple physiological processes, including energy metabolism, brain function, and behavior.

View Article and Find Full Text PDF

Amnesia is a memory disorder marked by the inability to recall or acquire information. Hence, drugs that also target the neurogenesis process constitute a hope to discover a cure against memory disorders. This study is aimed at evaluating the antiamnesic and neurotrophic effects of the aqueous extract of () on in vivo and in vitro models of excitotoxicity.

View Article and Find Full Text PDF

Mice with genetic ablation of PI3Kγ are protected from diet-induced obesity. However, the cell type responsible for PI3Kγ action in obesity remains unknown. We generated mice with conditional deletion of PI3Kγ in neurons using the nestin promoter to drive the expression of the Cre recombinase (PI3Kγ mice) and investigated their metabolic phenotype in a model of diet-induced obesity.

View Article and Find Full Text PDF

Background: Traumatic brain injury (TBI) is a change in brain function or evidence of brain pathology caused by external mechanical forces. Brain Derived Neurotrophic Factor (BDNF) is a neurotropin that functions as a neuron protective. Nigella sativa L is reported to have an antioxidant effect, administration of Nigella Sativa L to rats treated with ischemia-reperfusion brain injury.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!