Lichenysin, producted by Bacillus licheniformis, is an important cyclic lipopeptide biosurfactant, which has potential applications in oil exploitation, drug development, biological control of agriculture and bioremediation. While studies are lacking on metabolism regulation of lichenysin biosynthesis, which limits metabolic engineering and large-scale production of lichenysin. In this study, the yield of lichenysin was improved obviously by 13.6 folds to 2.18 ± 0.03 g/L in degU deletion strain (WX02△degU) compared with the wild-type strain (WX02) and completely inhibited in degU overexpressed strain (WX02/pHY-degU). We further proved that DegU, a transcription factor plays a significant role in multicellular behavior, is a key negative regulator of lichenysin synthesis lchA operon. But interestingly, lichenysin yield was still inhibited by overexpressing DegU in the promoter-substituted strain (WX02-Plch), in which promoter of lchA operon cannot be controlled by DegU. Thus, through C-metabolic flux analysis, we found that deletion of degU also enhanced glucose uptake, branched chain amino acid synthesis, and fatty acid synthesis, while decrease acetoin synthesis, which is beneficial for the supply of lichenysin precursors. Further experiments demonstrate that DegU regulates these pathways by binding to the promoter regions of related genes. Overall, we systematically investigated the multi-pathway regulation network mediated by DegU on lichenysin biosynthesis, which not only contributes to the further metabolic engineering for lichenysin high-production, but sheds light on studies of transcription factor regulation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ymben.2022.10.003 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!