Achieving mainstream anammox in biological aerated filter by regulating bacteria community structure.

Bioresour Technol

National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing 100124, China.

Published: December 2022

Although mainstream partial nitrification-anammox (PN-A) is a highly efficient and sustainable wastewater treatment process, it is difficult to achieve and stabilize due to the competition among functional bacteria. In this study, achieving one-stage mainstream anammox via regulating bacteria community structure was studied in a lab-scale biological aerated filter (BAF). The results showed that high free ammonia with 89.57 mg/L, nitrite nitrogen (NO-N) competition between anammox bacteria (AnAOB) and nitrite oxidizing bacteria (NOB), and backwash regulated the bacteria community structure. After backwash, Candidatus Kuenenia became the dominant bacteria and the relative abundance increased to 5.56 %. In BAF, one-stage mainstream anammox with total nitrogen (TN) being lower than 15 mg/L in the effluent was achieved using lag-time of bacteria activity recovery caused by alternating operation of high and low ammonia nitrogen (NH-N), which have great potential applied in municipal wastewater treatment plants (MWWTPs).

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biortech.2022.128091DOI Listing

Publication Analysis

Top Keywords

mainstream anammox
12
bacteria community
12
community structure
12
biological aerated
8
aerated filter
8
bacteria
8
regulating bacteria
8
wastewater treatment
8
one-stage mainstream
8
achieving mainstream
4

Similar Publications

Dual intermittent aerations enhance nitrogen removal via anammox in anoxic/oxic biofilm process for carbon limited wastewater treatment.

Bioresour Technol

January 2025

School of Environment and Climate, Guangdong Engineering Research Center of Water Treatment Processes and Materials, and Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519000, China.

Efficient nitrogen removal after organic capture is challenging through conventional nitrification-denitrification process. Two biofilm-based anoxic/oxic reactors, with a single intermittent zone (R1) or dual intermittent zones (R2), were compared in treating carbon-limited wastewater. Intermittent aeration integrated partial nitrification-anammox (PNA), partial denitrification-anammox (PDA), and denitrification, with anammox-related pathways contributing over 75% nitrogen removal in both reactors.

View Article and Find Full Text PDF

Deciphering intricate associations between vigorous development and novel metabolic preferences of partial denitrification/anammox granular consortia within mainstream municipal wastewater.

Bioresour Technol

January 2025

National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, PR China. Electronic address:

There is limited understanding of the granular partial denitrification/anammox (PD/A) microbiota and metabolic hierarchy specific to municipal wastewater treatment, particularly concerning the multi-mechanisms of functional differentiation and granulation tendencies under high-loading shocks. Therefore, this study utilized fragmented mature biofilm as the exclusive inoculum to rapidly establish a granular PD/A system. Following long-term feeding with municipal wastewater, PD/A process reached a total nitrogen removal efficiency of 97.

View Article and Find Full Text PDF

Anaerobic ammonia oxidation (anammox) which converts nitrite and ammonium to dinitrogen gas is an energy-efficient nitrogen removal process. One of the bottlenecks for anammox application in wastewater treatment is the stable supply of nitrite for anammox bacteria. Dissimilatory nitrate reduction to ammonium (DNRA) is a process that converts nitrate to nitrite and then to ammonium.

View Article and Find Full Text PDF

Simultaneous partial nitrification, anammox, and denitrification (SNAD) process offers a promising method for the effective removal of carbon and nitrogen from wastewater. However, ensuring stability is a challenge. This study investigated operational parameters such as hydraulic retention time (HRT) and biomass retention to stabilize SNAD operation, transitioning from synthetic to anaerobically pre-treated municipal wastewater (APMW) in an upflow hybrid biofilm-granular reactor (UHR).

View Article and Find Full Text PDF

Iron-loaded diatomite (Fe-DE) was developed as the innovative material to enhance anammox granular sludge (AnGS) and mainstream anammox performance. By adding Fe-DE with the Fe:DE ratio of 1:20 and the dosage of 3 g/L, the start-up period of mainstream anammox process was shortened from 29 d to 17 d and its nitrogen removal rate was increased from 0.234 kg N/(m·d) to 0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!